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Abstract. Organic Computing (OC) systems adapt to changes in the
system or environment to maintain system performance. Therefore, those
systems integrate a control part, which can be implemented central-
ized (globally) or decentralized (locally)—mixed (hybrid) approaches are
feasible. When determining the performance of such a system, various
metrics can be observed, which generally cluster in system-specific and
adaptation metrics. Whereas the first category is domain-specific and
measures the system’s performance, the second measures the adaptation
performance and can be used system-independently for evaluating OC
systems. In this paper, we present a measurement framework that takes
into account this split in quality attributes. We show how to apply the
measurement framework in a hybrid OC system based on the example
of platooning coordination.
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1 Introduction

Organic Computing (OC) [16] is a field that focuses on designing self-organizing,
adaptive, and robust systems inspired by biological principles to autonomously
manage their behaviour in dynamic environments. Therefore, these systems have
two main parts: the system itself, called the System under Observation and Con-
trol (SuOC), and the adaptation part. The adaptation part usually follows the
Observer-Controller Architecture [16], a framework that ensures the adaptability
and self-management of systems. The Observer continuously monitors the system
and its environment to collect data and identify deviations or patterns, while the
Controller uses this information to make decisions and adjust the system’s be-
havior to meet goals or maintain optimal performance. The Observer-Controller
elements might be concentrated into a centralized system part (global control) or
decentralized in the different sub-systems (local control). Also, mixed (hybrid)
architectures are feasible.
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However, the question arises of how differences between the architectures can
be assessed and what an integrated measurement and evaluation approach for
OC systems might look like. In this paper, we present a measurement frame-
work to compare the quality of adaptation for different control architectures. As
a complete discussion of the metrics for all aspects of adaptation quality is out of
the scope of this work, we focus on relevant metrics for distributed systems, such
as trust, benefits, costs, and emergence. We discuss the framework’s application
by conducting a simulation-based systematic evaluation of available global and
local metrics within a platooning system. Platooning is the context-related co-
ordination of vehicles to convoys in order to primarily exploit safety, capacity,
and slipstream effects. The coordination of platoons can be centralized (i.e.,
external infrastructure services), decentralized (i.e., between the participating
vehicles themselves), and hybrid as a combination. The basic problem of coor-
dination decision-making is highly dynamic and, with this dynamic as well as
the combination of (partially) autonomous local units and a system-wide objec-
tive function, it raises fundamental questions of OC [16]. For platooning as an
OC example, the same challenges apply as for other use cases: As platooning is
a multi-objective problem [20], there is no single objective function that could
be optimized directly. This problem is also visible for the generic class of Self-
Adaptive and Self-Organizing (SASO) systems, for which OC systems are one
example. Corresponding efforts can be mapped to the overarching question of
how the potentials and limitations of SASO systems can be made measurable
and assessable, especially in comparison to conventional, purely centrally coor-
dinated approaches. As both centralized and decentralized SASO systems come
with challenges in cooperative multi-agent scenarios, the underlying project aims
to build a hybrid SASO system, combining global optimization with autonomous
subsystems [18]. Therefore, a top-down and a bottom-up approach converge to-
wards the hybrid SASO system. Hence, this work focuses on examining the
differences between centralized and decentralized control architectures.

The remainder of this work is structured as follows: Section 2 introduces the
measurement framework. Section 3 describes the simulation environment and the
general experimental setup for the platooning application. Section 4 presents the
results of applying the relevant metrics from the measurement framework to the
platooning application. Finally, Section 5 closes this paper.

2 Measurement Framework

The demands of SASO systems are diverse, extending beyond safety concerns to
include the quality of their adaptation outcomes and the overhead required to
make the adaptation decisions [6,2]. The following outlines a selection of metrics
suited to evaluate the key properties of trust in Section 2.1, benefit and cost
in Section 2.2, as well as emergence in Section 2.3. While metrics evaluating
trust and emergence can be applied use-case independent, metrics evaluating
the benefits and cost of a system are mostly use-case specific and require an



Measurement Framework for Global and Local Adaptation Approaches 3

explicit transformation to the particular application scenario. We also distinguish
whether metrics are relevant at the global, local, or both levels simultaneously.

2.1 Trust

Trust in a system builds on a reliable, robust, and resilient performance. This
includes consistently fulfilling its intended functions in stable and changing envi-
ronments, even if unexpected changes occur (e.g., [15]). In particular, Stability,
Robustness, and Unavailability are metrics that support the assessment of these
three attributes and enable a comparison of trustworthiness between different
systems. The three metrics are explained in the following.

Stability At the local level, the Stability metric focuses on the total time
an agent spends in a desired state. Thus, the longer the total time, that the
agents spent in the desired state, the more stable a system is considered. In [8],
the stability of self-adaptation processes is assessed as how consistently a system
selects expected configurations over time. Depending on the system’s implemen-
tation, this can be on a global or local level. A system is stable if it frequently
chooses high-probability configurations, reflecting normal behavior. Instability
occurs when low-probability configurations are repeatedly chosen, signalling dis-
turbances or failures. To detect undesired behavior in SASO systems, the authors
use measures proposed by Kinoshita, that is, an activity factor and the fluctu-
ation variance of the activity factor [12]. Generally, high stability is desirable
because it indicates that the system maintains its structure and functionality
consistently over time, showcasing greater reliability. However, frequent recali-
brations could be favorable if they lead to a higher-quality outcome.

Robustness reflects the ability of the system to maintain a stable behav-
ior when faced with unpredictable changes. It can be measured by the system’s
ability to maintain functionality during perturbations, with minimal variation in
solution quality, by the new state of the system being close to the previous state,
or by minimal changes within the system between the state during the pertur-
bation and the new stable state [10]. In [11], the authors distinguish between a
system’s robustness under attack and long-term robustness. If a system never
drops below a pre-defined baseline utility, it is considered to exhibit robustness.

Unavailability measures the time during which the system is not opera-
tional or unable to meet the required functionality. Following the work of [3],
Unavailability U , i.e., the downtime of a system, can be derived as

U =
MTTR

MTTF +MTTR
(1)

with MTTR representing the mean time to recover and MTTF being the mean
time to fail. For systems with a fully centralized level of control, which represents
a potential single point of failure, this metric is crucial and serves as a measure
of the system’s reliability.
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2.2 Benefit and Cost

Achieving high-quality outcomes typically involves higher processing time or
resource use, requiring trade-offs between benefit and cost. While understanding
benefits aids in assessing costs, systems with strict time constraints must balance
optimality and feasibility [23]. In the following, we consider two metrics for
each attribute. We assess the benefit by applying the Situation Performance and
Fairness, while the Latency and Overhead metrics serve to evaluate the cost.

Situation Performance SP serves as a measure of the quality of the final
adaptation outcome and evaluates whether and how effectively the system fulfills
its intended purpose. The higher the SP , the higher the quality or benefit, the
lower the connected cost. In [22], the authors derive the Situation Performance
of a system by comparing the actual cost for an adaptation decision Csubsit to
the maximum possible cost Cmax. Therefore, they divide a situation sit into
numerous sub-situations subsit.

SP = 1−
∑

subsit∈sit Csubsit∑
subsit∈sit Cmax

(2)

The cost thereby represents a use-case-specific measure that requires an appro-
priate transfer depending on the system’s purpose.

Fairness can be categorized into various dimensions, such as resource fair-
ness, i.e., equally distributed access to resources, benefit fairness, or responsibility
fairness. Focusing on the example of benefit fairness, the metric evaluates how
profits are distributed among agents. The authors of [13] determine the fairness
among all individuals n by determining the Gini coefficient G.

G =
2
∑n

i=1 ix(i)

n
∑n

i=1 nx(i)
− n+ 1

n
(3)

Here, n refers to the total number of individuals in the group being analyzed,
composed of single individuals i, and their corresponding values x(i), represent-
ing a measurable attribute. A G of 0 indicates maximum fairness among indi-
viduals, where no single agent or group of agents consistently gains or suffers
disproportionately, while an index of 1 refers to minimum fairness.

Latency generally refers to the delay in system response. It reflects a time
cost associated with the system’s decision-making and adaptation processes
when encountering disturbances. Latency L can be measured by comparing the
time the system requires to adapt to changing environments Tchange to the time
it takes to perform its usual functionality without disturbances Tusual [10].

L =
Tchange

Tusual
(4)

A lower L indicates that the system is able to react more quickly to changes,
enhancing responsiveness. However, a higher L may suggest a more detailed
search for optimal solutions, which, while introducing delays, can lead to a higher
quality of the final adaptation outcome, but may also result in conflicts with time
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constraints. This trade-off between speed and quality is a key consideration in
systems with time-sensitive constraints.

Overhead For adaptation decisions to take place, information about the
participating agents is required. The gathering and processing of information
represents, among others, a form of overhead, which grows as the number of
agents increases or as more detailed information about each agent is required.
In general, overhead creates cost, but in turn, is a prerequisite for benefits.
The authors of [21] further distinguish between communication, computation,
memory, and monitoring overhead.

2.3 Emergence

Emergence describes a phenomenon where systems evolve from chaotic condi-
tions to higher-order levels without being explicitly programmed beforehand. It
arises from the interaction of many individuals who operate without central con-
trol [7]. Different ways to detect and measure emergence are presented below,
comprising the Interaction, Entropy, and Oscillation Detection metrics.

Interaction can be assessed by counting the number of effective interactions
It that take place for every individual i at a given time t [4].

It =
∑
∀i

δi,t (5)

δi,t changes from 0 to 1 for an effective interaction, which means that the inter-
action resulted in a state change. An emergent behavior can thereby be detected
if the results over time deviate from normality.

Entropy reflects the degree of disorder. Among various types of entropy,
Shannon’s Entropy is a prominent example in the field of information theory
and enables the evaluation of a system’s information content [5]. For Shannon’s
Entropy SE, the possible system states x of a system X follow a probability
distribution P (x). SE can be calculated using Equation (6).

SE = −
∑
x∈X

P (x) logP (x) (6)

A system with a low entropy represents a high certainty regarding the prob-
ability of specific system states to occur; thus, the information content of the
system is low. Conversely, a high entropy indicates a high information content
as the probability of a specific system state occurring is low, resulting in a high
uncertainty regarding predictions about system states.

Oscillation Detection OD represents the interval k after which a system
state St at time t has already occurred before [2], . The degree of similarity
between system states necessary to result in a detected reoccurrence depends on
the use-case and the definition of stability.

OD =

{
k if St ↔ St−k|k ≥ 1, t ≥ 0
0 else (7)
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It equals zero if there was no repeated state observable and otherwise results
in the respective time interval in between the states’ occurrence. The repeated
occurrence of an OD of 1 describes a steady state. Transferring this to the local
system layer, one could study the frequency with which agents change their
state and identify persistent fluctuations where the agents struggle to settle into
a stable configuration.

2.4 Further Metrics

The metrics presented here provide only a partial view, which is far from exhaus-
tive. Other relevant literature providing further metrics includes the work of Kad-
doum et al. [10]. The authors propose several measures for evaluating the adap-
tive properties of self–*systems, introducing metrics that focus on methodolog-
ical, architectural, intrinsic, and runtime evaluation criteria. Eberhardinger et
al. [6] focus on the key metrics for assessing the performance of self-organization
algorithms, with particular emphasis on time and solution quality. Furthermore,
Birdsey et al. [2] present a compilation of metrics that enable the evaluation of
the two properties, self-adaptation and self-organization, in isolation.

3 Experimental Setup

As for evaluating the performance of SASO and OC systems, adaptation metrics
and system-specific metrics must be considered. The experiments aim to inte-
grate domain-specific use case metrics and to show differences between central-
ized and decentralized control architectures. The experiments were conducted
using the example of platoon coordination, which describes a highly dynamic
multi-agent environment. For simulating the vehicles and traffic, we rely on the
open-source SUMO (Simulation of Urban MObility, [1]) simulator. For simu-
lating the platooning functionality, we use the Python API of Plexe [19], an
open-source SUMO extension. In the following, Section 3.1 explains the applied
traffic situations. Section 3.2 illustrates the implementation of two platooning
algorithms, one with a centralized and one with a decentralized control archi-
tecture.

3.1 Traffic Scenarios

Some parameters were set statically to keep the number of variable traffic sce-
narios in check.

Table 1. Platooning parameters
Parameter Value

Platooning spacing 5 Meters
Vehicle headway 1.5 Seconds
Max. platoon size 5 Vehicles

Table 2. Vehicle parameters
Parameter Value
Min. speed 80 km/h
Max. speed 160 km/h

Vehicle length 4.3 Meters

Table 1 shows the parameters for the platoons, while Table 2 shows the
static parameters for the individual vehicles. For simplicity, all vehicles are of
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the same dimensions and equipped with the same engines, only their desired
velocity differs, which is set to a random value between 80 and 160 km/h. We
test three different traffic densities on three maps with three different platooning
participation rates. Hence, we evaluate the two platooning algorithms on 27
different traffic scenarios. Each scenario simulates exactly 65 minutes of traffic, of
which the first 5 minutes are not considered for evaluation since the environment
is set up with vehicles on an empty highway.

Each of the three maps represents a unique challenge that can occur on
highways. For all scenarios, the cars spawn at the beginning of a one-kilometer-
long startup section and despawn when they reach the end of the one-kilometer-
long cool-down section. Yet only the 10 km long main road section is evaluated,
as spawning and de-spawning vehicles (on the startup- and cool-down sections)
might disrupt the natural traffic flow. In the Straight map, the cars drive on
a straight, three-lane highway. The second map is the Lane Reduction map,
which starts with a straight highway, but at 5 km, the rightmost lane ends; thus,
the 4-lane highway turns into a 3-lane highway. This leads to an increased traffic
density from that point onward. The third map is called the Y-map, which starts
with a straight section. After 5 km, the road splits into two, resembling the letter
"y" turned by 90°. This introduces a novel challenge to platooning, as platoons
might need to split up to ensure that each vehicle reaches its destination.

Traffic Density will likely influence the performance of platooning coor-
dination systems. We therefore consider the following scenarios: Low Density,
Medium Density, and High Density. Traffic density should not be too low, re-
sulting in high inter-vehicle distances and no opportunity for platoons to form.
Traffic density should also not be too high, resulting in a traffic jam. The High
Density is set to 5400 vehicles per hour (v/h) as this is estimated to be the
maximum capacity of a three-lane highway [17]. The Low Density was set to
1200 v/h to ensure that, on average, there are 10 vehicles within a 1 km stretch
of highway. The Medium Density is set to 3300 which is the average of Low
Density and High Density.

Platooning Participation is seen as voluntary for vehicles. Hence, we con-
sider that half of the vehicles (50%) want to join platoons. For comparison, we
also include scenarios without (0%) and with forced platooning (100%).

3.2 Platoon Coordination

As a general architecture for platoon coordination, we consider two possibili-
ties. Nearly all proposed platooning coordination systems follow one of these
two architectures [14]. In a centralized architecture, a central control unit is
in place to make platooning decisions. In a decentralized architecture, indi-
vidual vehicles coordinate the formation of platoons. In real-world applications,
the feasibility of either of these architectures depends on the infrastructure in
place (e.g., communication infrastructure). In [18], we further discuss the advan-
tages and disadvantages of the two architectures. As the inter-vehicle communi-
cation within platoons (e.g., keeping correct inter-vehicle gap, platoons changing
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lanes, etc.) is handled by Plexe, the centralized and decentralized platoon co-
ordination algorithms are mainly concerned with assigning vehicles to platoons.
Figure 1 shows the three main states of the platooning coordination task.

Fig. 1. State machine for the platooning coordination task from the perspective of
an individual vehicle. Vehicles can join, leave, and switch platoons. Vehicles not in a
platoon control their own speed and lane, while platoon leaders set these for the group.

The authors of [9] propose two static platoon coordination algorithms. The
proposed centralized and decentralized algorithms have only three parameters
(α, r, and m). This fits well into the experimental design because it focuses on
the metrics in relation to the traffic scenarios rather than optimizing algorithm
parameters. In assigning vehicles to platoons, the algorithms try to minimize two
values: One is the physical distance between the candidate vehicles c and the
target platoons’ t current position dp(c, t). The other is their difference in speed
ds(c, t). These two values are weighted against each other using the parameter
α, which we set to its default value α = 0.5:

f(c, t) = α · ds(c, t) + (1− α) · dp(c, t) (8)

In the decentralized algorithm, each candidate vehicle applies Equation (8) in-
dividually to find the best target platoon inside its search radius r = 500 m. In
addition, platoons with a traveling speed outside of the maximum speed devia-
tion m = 0.2 are not considered (e.g., a vehicle with a desired speed of 100 km/h
would only consider platoons traveling at speeds 80-120 km/h). Vehicle c then
selects the candidate platoon t, which minimizes f(c, t). If there are no platoons
within r and m, the vehicle creates a new platoon (only containing itself). If two
vehicles want to join the same platoon, first-come, first-served is applied.

In the centralized algorithm, a central controller first collects all possible
assignments (ci, tj , f(ci, tj)) of candidate vehicles ci to target platoons tj . Like
the decentralized algorithm, possible assignments outside the search range r =
500 m, and the maximum speed deviation m = 0.2 are not considered. The cen-
tral controller then assigns each vehicle to the corresponding optimal platoon.
The optimal platoon ti for a candidate vehicle c is the one that minimizes f(c, ti).
During the assignment, the centralized controller applies a greedy approach. It
finds the best target platoon for each candidate vehicle in random order while
removing possible assignments (ci, tj , f(ci, tj)) if a vehicle has already been as-
signed to platoon tj in this iteration.

We adopted and adapted these two algorithms for our experiments. Our
major changes to the original algorithms are twofold: First, in the original im-
plementation [9], vehicles were only searching for platoons in front of them to
join them from behind. In our implementation, vehicles search for platoons in
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front and behind and can join platoons from the back or front. This effectively
increases the number of joinable platoons for each vehicle and, thus, the like-
lihood of finding better-matching platoons. Second, in contrast to the original
implementation, our variant allows vehicles to change platoons.

4 Results and Discussion

To quantify the potentials and limitations of SASO systems, we derived use case-
specific measures from the metrics of Section 2. We focused on those metrics that
specifically highlight the differences between the centralized and decentralized
algorithms, providing insights into their respective strengths and limitations.

4.1 Trust

The Robustness metric measures the ability of a system to maintain functionality
during perturbations. While there are no sudden and unexpected perturbations
in the evaluated traffic scenarios, there are static perturbations, namely the
lane reduction and the y-split. At these points, the systems must adapt as the
environment suddenly changes. The platoon coordination system aims to assign
as many vehicles to adequate platoons as possible. Therefore, we interpret the
functionality of the system to be the number of vehicles driving in platoons.

Fig. 2. Robustness as the number of vehicles in a platoon over the length of the map.
The scenarios selected are with medium traffic and 50% platooning participation.

Figure 2 shows the number of vehicles driving in platoon formations at dif-
ferent points of the road. The straight map can be seen as the baseline, as there
are no disturbances on the road. Here, the number of platooning vehicles per
100 m rises steadily for both the centralized and the decentralized algorithms.
However, the centralized algorithm, in general, has a higher platooning density.
This general performance difference is relevant to consider when evaluating the
recovery after the disturbances for the Robustness metric because the focus here
is on robustness, not on general performance. On the lane reduction map, the
centralized and decentralized algorithms start out similarly. Just before the 5 km
mark, the number of platooning vehicles suddenly spikes. This is due to a gen-
eral high traffic density before the lane reduction point, where some vehicles
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need to merge, causing a slowdown of the following traffic. The main difference
is visible after the lane reduction; here, the centralized system recovered to a
higher platooning density than the decentralized system. But when compared
to the straight scenario, this difference can be attributed to the better general
performance of the centralized system. Thus, for the lane reduction scenario, the
two systems are similarly robust. Finally, on the y-map, both systems perform
similarly. The functionality drops slightly at the y-split as some vehicles split up
from their current platoons. Here, the difference between the centralized and de-
centralized systems is much smaller than in the straight scenario. This indicates
that the decentralized approach, while being, in general, less effective, is more
robust in this scenario.

Robustness reflects a system’s ability to recover and return to a stable or
desired state after a disturbance, ensuring long-term operational continuity. The
proposed metric allowed us to assess system robustness under different types of
disturbances. The results showed that the robustness varies depending on the
disturbance type, revealing potential weak points that could ultimately reduce
trust in the system. Explicitly identifying these vulnerabilities enables targeted
improvements to enhance system resilience. Therefore, we consider this metric
highly relevant within our framework, particularly in the Trust category.

4.2 Benefit and Cost

The Situation Performance describes the quality of the final adaptation out-
come. Concerning the use case, one of the main purposes favoring platooning
is the reduction of fuel consumption [24]. Thus, we assume a higher Situation
Performance if all vehicles that had the intention to participate in platooning
achieve fuel savings compared to a scenario without platooning, where the SASO
system was not active. Therefore, we calculate the individual Situation Perfor-
mance using Equation (2), and consider the mean fuel consumption of a vehicle
that wanted to platoon as Csubsit, while the maximum cost Cmax represents
the mean fuel consumption of the same vehicle in the scenario without platoon-
ing. This follows the assumption that platooning leads to fuel savings. If this
assumption does not hold, the Situation Performance yields a negative value.

Figure 3 illustrates the resulting Situation Performance of both centralized
and decentralized systems operating in scenarios with 50% and 100% platooning
participation, respectively, depending on the traffic density in vehicles spawning
per hour. Here, we chose to focus on the results of the lane reduction map as
the static disturbance of the road bottleneck led to traffic congestion for high
traffic densities, which represents a disturbance. The road split in the Y-map
also represents a disturbance, but did not result in congestion. Despite the chal-
lenge, the results show that platooning—regardless of traffic density—yielded
a higher Situation Performance and thus improved fuel consumption. At a low
and medium traffic density, a higher participation rate led to a higher Situa-
tion Performance, and the decentralized system outperformed the centralized
one. Conversely, with high traffic density, the trend reversed, making a lower
participation rate favorable, as those scenarios resulted in a higher Situation
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Fig. 3. Situation Performance of pla-
tooning vehicles at different platoon-
ing participation rates, depending on
the traffic density on the lane reduction
map.

Fig. 4. Gini Coefficient regarding the
fuel consumption of all vehicles at differ-
ent platooning participation rates, de-
pending on the traffic density on the
lane reduction map.

Performance. It additionally came to a switch in performance for the central-
ized and decentralized approaches at the medium platooning participation rate.
The results indicate that high platooning participation especially benefits low
and medium traffic densities, as it increases the number of potential platooning
partners, enhancing the opportunity to save fuel. With a dense distribution of
platoons on a crowded road segment, the inflexibility of all road users increases,
reducing the positive effects of platooning and, thus, the Situation Performance.
These observations indicate that with the current approaches in place, too-high
traffic counteracts the effect of platooning while emphasizing the presence of
a sweet spot marking the optimal fuel savings at a specific traffic density and
participation rate.

On a local level, one can assess the Fairness among the participating agents
with respect to their fuel consumption. This fairness, expressed as the Gini
coefficient (Eq. (3)), is presented in Figure 4 depending on the traffic density in
vehicles spawning per hour. For space reasons, we again focus on the results of
the lane reduction map, without platooning (0% platooning participation) as well
as 50% and 100% platooning participation with a centralized or decentralized
coordination algorithm. The results show that a higher vehicle density resulted
in a higher equality among the agents, with the Gini coefficient getting closer to a
value of zero. While at low and medium traffic levels, a higher participation rate
led to greater equality, at high traffic, higher participation resulted in decreased
equality. This shows that an increasing vehicle load increases fairness, as fewer
vehicles profit from platooning.

The benefit of improved fuel efficiency when platooning comes with neces-
sary pre-investments in the form of, among others, time cost. Therefore, we
determined the Latency of both approaches, centralized and decentralized, at a
maximum platooning participation rate, as here, we assumed the highest com-
putational effort. The lane reduction and y-split seen as a disturbance resulted
in no significant difference between the centralized and decentralized approaches
when taking the straight scenario as a baseline. However, a larger impact on
both system’s Latency proved to have the traffic density. With higher through-
put, the delay of both systems increased, with the decentralized system having
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a maximum Latency of 5.25 and, thus, less than half that of the central sys-
tem with 13.65. This significant difference can be explained by the fact that the
centralized approach always tries to find a solution for every vehicle at once,
whereas the decentralized approach considers each vehicle individually, resulting
in a lower calculation effort.

While the Situation Performance metric provided valuable insights regarding
the quality of the final adaptation outcome on a global level, the Fairness metric
enabled the performance assessment on a local level. A benefit on a global level
is necessary to reason for the system as a whole, whereas understanding the
distribution of those benefits on a local level helps identify potential dissatisfac-
tion or even agent withdrawal from participation. Therefore, independent of the
SASO system’s architectural approach, both perspectives must be considered,
making these metrics crucial to our measurement framework. Closely linked to
the benefits are the associated costs. The Latency metric, which captures cost
in the form of delay, allowed us to compare centralized and decentralized ap-
proaches in terms of the time required for adaptation. A key question is whether
these incurred costs are justified by the benefits gained, highlighting an inherent
trade-off, one that is evaluated differently depending on whether the perspective
is global or local. Furthermore, although not explicitly evaluated in this work,
assessing the overhead in terms of message exchanges could be a valuable metric
for future research. It may provide insights into local-level costs, particularly
enabling the evaluation of the effort required for an agent to participate.

4.3 Emergence

Here, we apply the Interaction metric, which counts the number of effective in-
teractions between vehicles. The vehicles are constantly communicating in order
to advertise and find platoon opportunities. An effective interaction takes place
if a state change occurs. In the platooning scenario, a state change equates to a
change in driving strategies for at least one of the vehicles involved. A strategy
change happens, for example, when a vehicle joins a platoon, switches platoons,
or the vehicles’ platoon changes lanes. Figure 5 shows how many effective in-

Fig. 5. Interaction as vehicles’ strategy changes over the length of the map. The sce-
nario is considering 100% platooning participation at a high traffic density.

teractions took place mapped over the length of the highway. We selected the
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scenarios with high traffic density and 100% platooning participation because
the differences between the centralized and decentralized systems are most clear.
In scenarios with lower platooning participation and/or lower traffic density, the
trends described below are similar, but the differences between the algorithms
are less pronounced. On all three maps, the number of interactions spikes ini-
tially as vehicles immediately try to find available platoons and join them. The
system then stabilizes as vehicles find adequate platoons and state-changing in-
teractions decrease. In the lane reduction map and the y-map, the number of
effective interactions then spikes around the traffic obstacle (at 5 km), as the
vehicles need to reorganize to navigate the obstacle. In general, the centralized
controller seems to facilitate more effective interactions. This could lead to a
better overall performance but also to a higher overhead.

The results of the Interaction metric indicate an emergent behavior of both
approaches, centralized and decentralized, when participants encounter distur-
bances, forcing them to reorganize. We found that out of the three proposed
metrics for emergence, the interaction metric is most applicable to our applica-
tion. Yet the Entropy and Oscillation Detection metrics, might be more suitable
for future application scenarios. Hence, we considered all three metrics within our
proposed framework for an extensive assessment of a SASO system’s emergence:
the Interaction metric—to detect emergence, Entropy—to evaluate the degree of
(dis)order, and the Oscillation Detection metric—to measure fluctuations and,
consequently, the stability of the established order.

4.4 Discussion

Our results have shown that the centralized and decentralized algorithms per-
form differently in different situations and relative to different metrics. The In-
teraction metric shows that the centralized algorithm facilitates more effective
interactions due to its globalized view. On the upside, this leads to a gener-
ally higher platooning density (as shown by the Robustness metric). On the
downside, the Latency metric shows that this globalized view also requires more
resources, especially when the traffic density increases. When measuring the
benefit of applying the centralized vs. the decentralized algorithm, the Situation
Performance metric shows that there is no clear winner, and the performance
is situation-dependent. In some scenarios, the higher general platooning den-
sity leads the centralized system to perform better. In other scenarios, savings
in overhead and general robustness lead the decentralized system to perform
better.

The results show that rather than applying static algorithms, it is neces-
sary to apply intelligent systems that learn to recognize different situations and
act accordingly. The decentralized algorithm could be improved by applying
Reinforcement Learning. While the centralized algorithm could benefit from op-
timization techniques that improve the coordination. The results also reinforce
the necessity for a hybrid system [18], which combines the strengths of central-
ized and decentralized systems. Our proposed measurement framework aims at
a comprehensive evaluation of SASO systems. We identified three key metric
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categories: Trust, Benefit and Cost, and Emergence. Our findings demonstrate
that no single metric can fully assess an entire category; instead, a combination
of metrics is required to capture a system’s strengths and weaknesses. Moreover,
evaluating both the global and local levels is essential, as their distinct inter-
ests influence the system as a whole. Different metrics are needed for each level
to ensure a well-rounded assessment. By incorporating both perspectives, our
framework not only provides a holistic evaluation but also enables a direct com-
parison of different approaches. We see two main limitations of this work. First,
the proposed measurement framework is far from exhaustive. While this work
aims to include the most relevant metrics, we recognize that some excluded ones
could round off the framework. Second, with the platooning application, we aim
to highlight the ability of the measurement framework to showcase the differ-
ences between centralized and decentralized architectures. Yet, one application
scenario is not sufficient to show the general applicability of the proposed mea-
surement framework.

5 Conclusion

When it comes to measuring the effects of SASO and OC systems, there is
rarely one singular metric that is able to fully capture a system’s complexity and
overall impact. In this work, we propose a measurement framework to assess such
systems’ dynamics. Our framework provides diverse measures from the areas of
Trust, Benefit and Cost, as well as Emergence. We evaluated the measurement
framework on the example of platooning, applying two coordination strategies—
centralized and decentralized. None of the two approaches was preferable over
all scenarios and the performance was situation-dependent. This work has shown
that the framework, while not exhaustive, is able to highlight the strengths and
weaknesses of centralized and decentralized systems. Thus, it is in a good position
to be useful in evaluating hybrid approaches, which is the main objective of our
future work.
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