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Poultry Perfection - Comparison of Computer Vision Models to Detect

and Classify Poultry Products in a Production Setting
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Christian Krupitzer

e Computer vision was applied to assess quality of ready-to-eat meat products.

e Models reliably distinguished between “good” and “imperfect” products based

on visual quality deviations.

e High detection accuracy (mAP50-95 > 0.9) demonstrates the feasibility of au-

tomated visual inspection in food processing.

e Balanced and consistently labeled datasets are critical for reliable food quality

control in practice.
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Abstract

This study explores the use of computer vision, specifically object detection, for
quality control in ready-to-eat meat products. We focused on a single process step,
labeling products as “good” or “imperfect”. An “imperfect product” constitutes a
product that deviates from the norm regarding shape, size, or color (having a hole,
missing edges, dark particles, etc.). Imperfect does not mean the product is inedible
or a risk to food safety, but it affects the overall product quality. Various object
detectors, such as YOLO, including YOLO12, were compared using the mAP50-95
metric. Most models achieved mAP scores over 0.9, with YOLO12 reaching a peak
score of 0.9359. The precision and recall curves indicated that the model learned the
“imperfect product” class better, most likely due to its higher representation. This
underscores the importance of a balanced dataset, which is challenging to achieve

in real-world settings. The confusion matrix revealed false positives, suggesting that
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increasing dataset volume or hyperparameter tuning could help. However, increasing
the dataset volume is usually the more difficult path since data acquisition and
especially labeling are by far the most time-consuming steps of the whole process.
Overall, current models can be applied to quality control tasks with some margin
of error. Our experiments show that high-quality, consistently labeled datasets are
potentially more important than the choice of the model for achieving good results.
The applied hyperparameter tuning on the YOLO12 model did not outperform the
default model in this case. Future work could involve training models on a multi-class
dataset with hyperparameter optimization. A multi-class dataset could contain more
specific classes than just “good” and “imperfect,” making trained models capable of
actually predicting specific quality deviations.
Keywords: Food quality, Computer vision, Object detection, Neural networks
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

With an ever-increasing world population and various crises affecting human-
ity, advancements across the entire food supply chain are necessary to secure food
production and maintain food safety and quality in the future (Krupitzer and Stein,
2024). In recent years, the world has seen significant progress in the areas of artificial
intelligence leveraged by machine learning methods (Kakani et al., 2020). This leads
to the question of how these developments can be used to enhance food production.

One important aspect of food production is food quality control, which still often
relies on humans doing the evaluation. This is costly on one side and also prone to
errors due to the influence of physiological factors, especially when it comes to tasks

such as visual inspection (Du and Sun, 2006). Computer vision in itself is not a
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new concept and has been employed in various areas such as medicine (Esteva et al.,
2021), autonomous driving (Dong and Cappuccio, 2024), security monitoring (John-
son, 2023) but also to some degree in agriculture and food production (Ma et al.,
2024; Zhu et al., 2021). While earlier computer vision tasks were primarily focused
on basic image processing, today’s computer vision models are significantly more
sophisticated (Laad et al., 2024). This advancement is largely due to the increase in
computational power and the availability of large datasets, which enable the training
of complex models capable of handling intricate visual data (Laad et al., 2024).
Most modern computer vision models are currently based on neural networks,
more specifically, the established convolutional neural networks (CNNs) but also the
more recent vision transformers (ViTs) (Li and Zhang, 2024). The main difference
between these two architectures is how they treat the input images. CNNs use, as
the name indicates, convolutional layers to process images in a spatially localized
manner, while ViTs treat images as a sequence of tokens, also leveraging a self-
attention mechanism to keep long-range dependencies (Haruna et al., 2025). Both
ViTs and CNNs have already been used for various tasks related to food quality,
for example for the detection of diseases in tomatoes (Simonyan and Zisserman,
2015), classification and identification of olives (Salvucci et al., 2022), classification
of red meat based on its freshness (Bajpai et al., 2024), or identification of poultry
diseases (Vrindavanam et al., 2024). However, most existing studies in this field are
limited in two key aspects: they are typically conducted in controlled laboratory
environments and often focus on evaluating a single model architecture. This limits
their generalizability and practical applicability in real-world production settings. In
contrast, our study addresses this gap by applying and comparing several cutting-
edge object detection models, on data collected directly from a running poultry

production process.
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The goal of this work was to implement and compare different computer vision
models to find out which ones perform best in the task of distinguishing “good”
products from “imperfect” products. Another important aspect of this work was how
simple the implementation of such models is for someone without specific domain
knowledge in computer vision.

While this work does not introduce a novel model architecture or algorithmic ad-
vancement, its contribution lies in the application of state-of-the-art object detection
models to a real-world industrial setting. Unlike many studies that rely on standard-
ized or laboratory-collected datasets, our data was gathered during live production
at a poultry processing facility, reflecting realistic visual variability and operational
conditions. This practical grounding, combined with a comparative evaluation of
several recent models, including YOLOv10 through YOLOv12 and DFine, addresses
a gap in applied computer vision literature, particularly within the underexplored do-
main of food processing environments. To the best of our knowledge, this is the first
study to apply some of these state-of-the-art models in a real-world food production
environment.

First, the images were collected on-site using cameras mounted on a production
belt. The images were then preprocessed, meaning bounding boxes and labels were
added to the images, which is necessary to train a model. Different models were
chosen, which was mainly based on how recent, popular, and easy to implement
the models were. The models were trained and evaluated using our dataset and
subsequently compared to each other using the mAP50-95 metric. Determined by
this comparison, we examined the “best” model by using additional performance
metrics for this purpose. The paper is structured as follows: In Section 2, our overall
approach is explained; this includes an explanation of the production process where

the images came from, as well as a more detailed explanation of how a machine
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learning task like this is tackled and how the evaluation was done. Section 3 presents
the results of the experiments and discusses them. Section 3.1 and 3.2 focus on some
preliminary experiments that were conducted as a set-up for the main comparison.
The comparison of multiple models is described in Section 3.3, these results directly
lead to Section 3.4 where the most promising (or recent) model was examined more
closely. In Section 4, potential threats to validity are brought forward. Finally, in
Section 5, the ndings are summarized, drawing a conclusion and giving an outlook

on potential future aspects of the work.

2. Materials and Methods

This section describes our approach and how we implemented the various steps.
The owchart shown in Figure 1 provides an overview of how a machine learning
task is usually tackled. We also followed this approach and will explain it in the

following in detail.
[Figure 1 about here.]

The rst step, as simple as it may sound, is to understand the underlying problem
to be solved. In this study, the problem can be described as an object detection task.
Objects, namely chicken products on a belt, should be individually localized and then
a label should be assigned, sorting them into the correct class. This already narrows
down which models can be used and also means that the necessary data comes in
the form of images. The next step is data collection and for machine learning it is
essential to collect as much relevant data as somehow possible. After enough data
is collected, the data needs to be cleaned. This step varies depending on what kind
of data is used. In the case of image data, it means selecting relevant images and

building a training dataset for the machine learning task. Afterwards, the images are
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checked (le type, duplicates, etc.) and then brought into the format expected by
the algorithm. This often happens with the next step already in mind, which is the
model selection. Most models have certain parameters that can be adjusted, which
might be necessary depending on the input. Afterwards, the model is trained and
the results are evaluated using the various metrics mentioned in Section 2.1. Usually,
multiple models are rst tested, and the best one is selected before switching from
the O ine-phase to the Online-phase, in which a model is deployed and used.
This work only includes the rst phase, which will be explained thoroughly on the
presented use case, including the implementation.

Data collection: To collect enough data, camera systems were installed after
various steps over the belt of a running process line as displayed in Figure 2. Each
camera system featured two cameras. In total, there are four camera systems in
the process, all equipped with two cameras and a powerful light source to ensure
consistent lighting. Due to this setup, the camera's angle and distance to the belt
were xed, so the cameras were used as intended for customer use. Additionally,
since the data collection happened in an active process environment during regular
production, no changes could be made regarding the environment or test setup.
While this setup does not allow extensive experimentation, it does produce real-world
data from an actual production process with no alteration and consistent data even
over multiple production days. The cameras were run on three di erent production
days for approximately. 30 minutes to 1 hour each, collecting between 2,000 and
10,000 images per production step. The camera symbo]s X in Figure 2 show the
places where images were continuously taken.

The analyzed process includes the following steps: First, the raw meat mass is
lled into a pump, which applies it into forming moulds of the forming machine.

Second, the formed product is ejected on the production belt, and liquid batter is
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applied, which acts as an adhesive for the following coating. Then, the product gets
par-fried and cooked in an oven, which nally results in a ready-to-eat product. For

this work, we only focused on the forming production step.
[Figure 2 about here.]

Data Analysis and Preprocessing:  First, we used GroundingDINO (Liu et al.,
2025), which essentially generates bounding boxes automatically using a text-prompt
as input. Bounding boxes are rectangular boxes that de ne the size and position of
an object within a picture (see Figure 3, the red boxes). Bounding boxes are needed
for the models to understand where the objects are located so that they know what

the regions of interest are, and to learn the objects within them.
[Figure 3 about here.]

An example of an image processed with GroundingDINO is depicted in Figure 3.
The image processing works quite well and reduces the work for manual annotation
considerably. The gure also shows that this process is not always perfect, e.g., the
top row of chicken products does not have bounding boxes, so manual intervention is
still needed. The bounding box information generated by GroundingDINO is saved
to JSONIles, which can then be imported to a labeling software. We used the open
source tool Label Studio as labeling software. Using Label Studio, the images were
labeled manually and sorted into classes (see Figure Al in Einsiedel et al. (2025)).

An example of what is considered a good product and what would be considered
imperfect is shown in Figure 4. It is important to note that we chose the class
name imperfect product since sorting out or throwing away those products is not
necessarily required. They just deviate in some visible way from what might be

expected of that product regarding shape or color, among other aspects.
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[Figure 4 about here.]

After all images are labeled, they can be exported in various formats, such as the
YOLO format, the COCO format, and Pascal VOC, to support di erent machine
learning frameworks for further analysis. For our models, only the rst two are rel-
evant. The YOLO format has a correspondingxt le for each image, meaning for
a imagel.png, a correspondingimagel.txt le containing a class ID representing
the class (e.g., 0 = good product, 1 = imperfect product). In comparison to that,
the COCO format is usually one singularJSONIle containing the image names as
well as the bounding box information for the entire dataset (see Listing 1 and List-
ing 2 in Einsiedel et al. (2025)). Using the label les, the succeeding steps of the
machine learning analysis could be performed. However, it is recommended that the
di erent classes be balanced in size, i.e., the number of pictures should be similar.
In cases with an imbalanced size of items, there is the optional step of augmenting
the images.

Data augmentation is a method used not only in computer vision but in machine
learning analysis in general. It in ates the data set by applying various transfor-
mations to the input data. In the case of images, it can be operations like ipping
the image, changing its brightness, and shuing the color channels, among other
operations. The method is useful to tackle common problems such as over tting
while also making the model more robust (Shorten and Khoshgoftaar, 2019). For
image augmentation, there are libraries such adbumentations , which provide var-
ious augmentation techniques for images (see Listing 3 in Einsiedel et al. (2025). In
our study, we experimented with custom augmentation, which included horizontal
ipping, random brightness and contrast adjustment, grayscale conversion, and chan-

nel shuing. These augmentations were selected to mimic plausible variations that
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may occur in practice due to changes in product orientation, lighting uctuations,

or sensor-related artifacts. They also include some very extreme changes, such as
channel shu ing, even though the latter is probably not something that realistically
occurs. The results of the augmentations are depicted in Figure 5. It is essential to
remember that corresponding label les need to be created for the augmented images

as well.
[Figure 5 about here.]

Once the images and label les are in the correct format, the dataset is split
into a training and validation subset. In this study, a 0.8 split was chosen, meaning
80 % of the images were used for training, while 20 % were used to validate the
model. The 80:20 split has been widely used, and in our case (with 2040 images),
it would mean the model gets trained on 1632 images, while 408 are reserved for
validation. This split ratio is also recommended by TensorFlow in their tutorial
for image classi cation (tensor ow, 2019). However, it depends on the size of the
dataset. For larger datasets, for example, a 0.9 split might also be appropriate.

Model Selection: The model selection in this study was even done before the
preprocessing, since it determined how to format the data. For this work, we chose
di erent versions of YOLO, most of them by Ultralytics, due to their easy imple-
mentation and ne-tuning capabilities, from YOLOV5 (Jocher, 2020) up to the most
recent YOLO12 (Jocher et al., 2023). YOLO has been used for applications in food
quality control to some degree. For example, YOLOv3 has been implemented for
a mobile food grading system to detect defects on the peel of bananas (Zhu and
Spachos, 2021). YOLOvV5 has been used to detect impurities among walnut kernels
on a belt, and YOLOVS8 has been proposed for the detection of spoilage with a focus

on fruits (Dhelia et al., 2024; Yu et al., 2023). Most of the research using YOLO
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in the context of food seems to be on agricultural and farm-level applications rather
than processed foods. We did not include all YOLO models since there have been
many new developments over the last couple of years, and we wanted to focus more
on the state-of-the-art. Also, older repositories are often no longer maintained and
sometimes create issues with, e.g., newer software and dependencies. Since ViTs
are also becoming more popular, we also trained two of those architectures, namely
RT-DETR (Zhao et al., 2024) and D-FINE (Peng et al., 2025). ViTs have been exam-
ined in the food context as well, for example, for classifying mushrooms (to prevent
people from consuming poisonous mushrooms) or for disease detection in strawber-
ries (Aghamohammadesmaeilketabforoosh et al., 2024; Wang, 2022). RT-DETR has
been used for ripeness detection of tomatoes (Wang et al., 2024b). However, the
research for ViTs in the food sector is currently rather limited. We chose RT-DETR
from Ultralytics because we could train it with very few modi cations using our
training set-up from the YOLO models. Furthermore, this makes it easy to compare
it to the other models provided by Ultralytics. D-FINE was chosen because it is one
of the most recent ViT detectors, having been released in October 2024.

Model Con guration : Most object detection models have a couple of con gu-
rations that can be adjusted. So, in the following, the most common ones that are

usually speci ed in the training command will be explained:

" Image size: The image size determines the dimensions of the input. Allimages
will usually be resized to this size to get a uniform input. A higher resolution
is often desirable, but training on higher resolutions becomes computationally

intensive very fast.

" Epoch: An epoch refers to one pass of the entire dataset through the model.

For example, 100 epochs mean that the model sees the entire dataset 100
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times during training. This allows the model to re ne and adjust its weights
incrementally. If the number of epochs is set too low, the model might not per-
form ideally, while too many epochs can lead to over-training, which impacts

the model's ability to generalize.

Batch size: The batch size determines the number of images that are pro-
cessed together as a group during one forward and backward pass. This
means if you have 1,000 images and a batch size of 8, then 8 images are always
fed at once to the model, and after 125 batches, one epoch is completed. Larger
batch sizes allow faster training. However, it is also computationally intensive,

so batch sizes are usually in the range of 8-32.

Besides that, most models also have a hyperparameter le containing additional
parameters (such as learning rate, weight-decay, built-in augmentation operations,
etc.). They can be manually tweaked or adjusted via hyperparameter tuning to
further improve performance. For our experiments, we mainly applied the suggested
default parameters of each model and only adjusted epochs and batch sizes when
necessary. However, this will be discussed in more detail in Section 2.2.

Model training : After the appropriate con gurations have been chosen, the
model can be trained. Usually, the training script is called, and optional pretrained
weights are passed, along with the desired con gurations and the path to the dataset
(see Listing 4 in Einsiedel et al. (2025)).

Model evaluation: The model evaluation takes place after and sometimes even
during training between epochs. For evaluation, the validation dataset is used, which
consists of labeled images the model has not seen during training. The model tries
to predict the bounding boxes and their corresponding labels and then compares

them to the ground truth. Based on that, various performance metrics are calculated,
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which are further discussed in Section 2.1. Everything after the evaluation is part of

the Online Phase and will not be covered in this work.

2.1. Performance metrics

Di erent metrics exist to evaluate machine learning models and give insight into
their performance. Often, it is best to consider multiple metrics since no metric
covers every aspect. The following presents a couple of the most popular metrics in
computer vision, some of which are also used in this work. Table 1 summarizes the
de nition of true positives (TP), false negatives (FN), true negatives (TN), and false

positives (FP), which are used in various metrics.

[Table 1 about here.]

Precision: Precision measures the number of correctly retrieved instances di-
vided by the total number of retrieved instances (Dalianis, 2018). So, as an example,
how many imperfect products were correctly classi ed as such. The equation for
precision is shown in Equation 1.

TP

Precision: P = ————— 1
recision TP+ Fp ()

Recall: Recall measures the number of correctly retrieved instances divided by
the total number of correct instances (Dalianis, 2018). Equation 2 is used for the
calculation of recall.

TP

Recall: R = m (2)

F -score: The F -score calculates the harmonic mean of precision and recall (Dalia-

nis, 2018). Equation 3 shows how the Fscore is de ned. The parameter deter-

12



257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

mines the importance of precision or recall (Jiang et al., 2022). In this work, is set

to 1, indicating that precision and recall are considered equally important.

Precision Recall
( 2 Precision + Recall

F =1+ % ®3)

Intersection over union (loU): Intersection over union is the ratio of the area
of overlap to the area of union between the predicted bounding box and the ground
truth bounding box (Terven et al., 2023). loU is used as a metric for assessing the
quality of predicted bounding boxes, particularly in the eld of object detection,
which is the focus of this work, making it a crucial metric (Stodt et al., 2023). The
loU can be calculated using Equation 4 (Hua, 2018). IoU primarily evaluates the
detection of predicted bounding boxes rather than the classi cation of products.
Hence, it allows us to evaluate how accurately the model detects and localizes the
chicken products within the image.

A\ B

loU = A\[—B (4)

Mean average precision (mAP):  The average precision (AP) represents the
area under the precision-recall curve, evaluated at a speci c loU threshold (Li et al.,
2023b) and is calculated for each class individually, whereas the mAP provides the
average of the computed AP values across all classes (Li et al., 2023b). Often, the
distinction between mAP and AP is no longer made, leading to the frequent use of
the term mAP. Frequently used are mAP50, mAP75, and mAP50-95, the rst two
are the mAP evaluated at an loU threshold of 0.5 and 0.75 respectively, while the last
one is evaluated over a range of loUs starting from 0.5 to 0.95 in steps of 0.05 (Reis

et al., 2024). The mAP is calculated according to Equation 5.
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P k
. AP;
MAP = %‘ for k classes (5)
Confusion matrix:  The confusion matrix is used to obtain more detailed infor-
mation about the performance of the model (Gajjar and Jethva, 2022). It allows us
to infer how many instances of a speci ¢ class were correctly classi ed or misclassi ed

as other classes (Gajjar and Jethva, 2022).

2.2. Experimental set-up

In the following, the overall set-up for the experiment will be explained. This
will include a short explanation of the dataset and list the various models used and
how they were compared. The models were trained using an NVIDIA TeslaV100
graphics card with 32 GB of VRAM on a virtual machine with an AMD EPYC 7452
Dotriaconta-core (32 Core) CPU, 16 GB of RAM using Ubuntu 22.04.5 LTS as OS
and Python 3.10.12.

Dataset: As already mentioned, the images used for training the models were
captured after the forming processing step on a production line for ready-to-eat
chicken products, as depicted in Figure 2. The used data is a combination of images
recorded on the production days, August 2, 2023, November 8, 2023, and January
31, 2024. The images were collected during the live production of corn akes-coated
chicken escalopes. From the captured images, 2,040 were labeled and used for the
subsequent training of the models. Additionally, 40 images containing only back-
ground were added. We also applied augmentation based on probability (see List-
ing 3 in Einsiedel et al. (2025)) to the images to further increase the dataset size.
This was done according to Listing 3 in Einsiedel et al. (2025), where augmentations
are applied with a certain probability. We chose 50 % for horizontal ip since that

doesn't change the images dramatically while still providing some variation. The
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other probabilities for the other augmentations were set to 20 % to provide some

edge case examples. In Figure 6, the structure of the dataset is shown.
[Figure 6 about here.]

Preliminary experiments: When this study was started, YOLOv8 was the
most recent version. In this study, we used it as a baseline model to start the
experiments and explore how di erent approaches in uence the training. In the
rst experiment, we trained a YOLOv8 model from scratch and one with pretrained
weights. We used YOLOvVS8x as the largest YOLOv8 model with the default settings
recommended by Ultralytics, which are an image size of 640, a batch size of 16, and
300 epochs. Using the results from that experiment, we also compared how our own
augmented images in uence the training process by training a YOLOv8x model with
and without them. Be aware that most models do apply their own augmentations
during training. We, however, wanted to see the e ect of what happens when we
include our own augmented images. To compare the models, we used the mAP50-95,
which is commonly used for that. Table 2 shows the setup. From the results of these
experiments, we derive the settings for further analyses. Section 3.1 and Section 3.2

present the results of the preliminary experiments.
[Table 2 about here.]

Comparison of di erent models: We trained several models and compared
their mAPs after training to examine di erences between them. Based on the results
from the preliminary experiments, we chose to use pretrained models when available,
and if possible, we used the largest model size. We also tried to use similar settings
for all models while adhering to the repositories’ recommendations. Some of the

models were more di cult to implement and computationally more intensive, which
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means that in those cases, we adjusted them so that we could still run them with the
available resources. Table 3 lists the complete list of trained models, including their

settings. Section 3.3 shows and discusses the results of the models' comparison.
[Table 3 about here.]

We also explored the best model(s) using additional performance metrics besides
the mAP, such as precision, recall, the fscore, and the confusion matrix. The
selection of the best model(s) was based on their achieved mAP50-95 as well as
factors such as the model's recentness and user-friendliness.

Additionally, Tukey's HSD was performed to nd out which of the models di er
signi cantly from each other (Tukey, 1949). The level of signi cance was set to

= 0:05. To calculate the pairwise di erences, thestatsmodels library in Python
was used. Section 3.4 elaborates on the details of the best-performing model. To
calculate the di erence all mAPs over the training epoch were considered.

Hyperparameter tuning of the best model: We conducted hyperparameter
tuning of our top model, which was done with Ultralytics' integratedtuner class. To
see whether this further improves the model compared to what it achieves with the
default setting. The aim is to see whether this further improves the model compared
to the results achieved with the default setting. This automated process trains the
model over multiple iterations, applying a mutation of the hyperparameters after each
training. As stated on their website, a genetic algorithm is used for this purpose.
1, We implemented it according to their documentation; the structure of our tune

command can be found in Listing 5 in Einsiedel et al. (2025). The epochs were set

(https://docs.ultralytics.com/de/guides/hyperparameter-tuning/

#what-are-hyperparameters )
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to 100. While Ultralytics used 300 iterations in their example, we reduced this to

100, as otherwise the runtime would increase signi cantly.

3. Results and Discussion

This section explains and discusses the results of the experiments. First, we
describe the results of the experiments that were conducted at the beginning to
understand the in uence of pretraining (see Section 3.1) and data augmentation (see
Section 3.2) using the YOLOv8x models. Second, Section 3.3 compares di erent
models using the mAP50-95 as key metric. Third, Section 3.4 evaluates the best

model by including additional performance metrics.

3.1. Preliminary Experiments: Fine-tuned Model vs. Model Trained from Scratch

As shown in Table 2, we started by training YOLOv8x on our dataset with the
default settings. One model was initialized with pretrained weights; the other was
trained from scratch. Figure 7a shows that the pretrained model surpasses the one
trained from scratch very fast, which should not be surprising since it has already
been trained on a dataset with other objects. The curve also shows that it converges
faster than the model trained from scratch; however, it also runs into over tting
visibly earlier, ultimately falling beneath the curve of the model trained from scratch
at later epochs.

To train an ML model, a function is needed that provides a measure of the
algorithm's performance (Ciampiconi et al., 2024). Loss functions are functions in
ML that we want to minimize in order to optimize the model (Goodfellow et al.,
2016, p. 80). The validation loss is calculated on the validation dataset and helps
to detect over tting. Di erent loss functions exist depending on the type of task or

application (Wang et al., 2022). The over tting can also be observed in Figure 7b,
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where the validation loss curve increases towards the end for both models. The
increase happens around the same epoch as the mAP starts decreasing. Important
to mention is that while the epochs for the training were set to 300, the training was
interrupted early in both instances. This is due to the so-callegatience parameter,
which was set to 100, i.e., if the validation loss does not improve for 100 consecutive

epochs, training is halted, serving as an early stopping mechanism.
[Figure 7 about here.]

As shown in Table 4, the di erences between the two models are not statisti-
cally signi cant. We did limit the epochs to 100 to prevent a drop in the model's
performance and to reduce overall training time. This approach could be compared
to early-stopping, which is widely used in practice to mitigate over tting in deep

learning (Hussein and Shareef, 2024).
[Table 4 about here.]

These results are also in line with other ndings, which show that pretrained
models converge faster, but they also show that, while training from scratch might
take a bit longer to converge, the overall results are often similar (He et al., 2019).
Additionally, a study observed that while pretraining may not always improve the
model on the classic performance metrics, it may still improve the robustness and
uncertainty estimates (Hendrycks et al., 2019). Considering those observations and
taking our results into account, we decided to use the pretrained models for model

comparison.

3.2. Preliminary Experiments: In uence of Data Augmentation

The next experiment was conducted to determine the in uence of data augmen-

tations on the mAP. So, we used the yolov8x.pt model and ne-tuned it without any
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augmentations and once with our own augmentations as speci ed in Listing 3 in Ein-

siedel et al. (2025), comparing it to the default model (yolov8x.pt).
[Figure 8 about here.]

As we see in Figure 8, the model trained with custom augmentations reached a
peak mAP of 0.9243, and the one trained without any augmentations reached a peak
mMAP of 0.9262, while the default model reached a peak mAP of 0.9320. However,
while the default model converges more slowly at the start, it also does seem to remain
rather stable over more training epochs, whereas the other two models, especially
the one without any augmentations, drop o after reaching their peak. This can,
as previously determined, be a sign of over tting. With the mosaic augmentation,
the default model applies one of the more sophisticated augmentation techniques
to the data, which might be a reason for over tting to occur later. For the custom
augmentations, it happens earlier, and the model without any augmentations over ts
after around 35-40 epochs. Table 5 provides a summary of the achieved peak mAPs
of each model and the respective epoch in which it was achieved. It also shows that
there are signi cant di erences between the default yolov8x.pt model and the one
trained without augmentations.

This experiment indicates that augmentations indeed in uence the training pro-
cess, and the type of augmentation seems to play a role. This is also con rmed
by (Kumar and Muhammad, 2023) and (Modak and Stein, 2025), where di erent
augmentation combinations were used, resulting in di erent mAP scores. Addition-
ally, it also shows that augmentation is an e ective and rather easy-to-implement
regularization technique to prevent over tting (Santos and Papa, 2022). Using own
augmentations (or changing the augmentation settings in the model) might poten-

tially yield better results than using the default settings prede ned by the model.

19



419

420

421

422

423

424

425

426

427

428

429

431

432

433

434

435

436

437

438

439

440

441

442

Even though the model without augmentations also reached very good mAP values,
it might still be a good choice to include some augmentations to increase the model's
generalization abilities (Shorten and Khoshgoftaar, 2019). A model that has been
trained on augmented images might be superior if the environment changes even
slightly (e.g., lighting).

These results show that object detectors such as YOLO can work quite well
straight out of the box . So, tweaking the model or doing hyperparameter tuning
might not always be necessary unless it is absolutely critical to reach the highest

possible mAP.

[Table 5 about here.]

3.3. Comparison of Di erent Models

The following section shows the results of comparing various iterations of YOLO
among two other detectors (D-FINE and RT-DETR). In order to compare them, the
biggest model size was used for all of them. We used pretrained weights and, to
allow a baseline comparison, we also tried to train them (as far as possible) on their
default settings, as shown in Table 3. The results are shown in Figure 9. The curve
for the RT-DETR is visible below the other curves over the proposed training epochs
and it also reached the lowest peak mAP with 0.8270. Compared to D-FINE, which
is based on RT-DETR, D-FINE performs signi cantly better, reaching a peak mAP
of 0.9284. The highest mAP overall was achieved by YOLO11x, closely followed
by YOLO12x, with 0.9361 and 0.9359, respectively. However, what becomes quite
evident when looking at these curves is that all of these models reach very similar

mMAPs for the given task.

[Figure 9 about here.]
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Table 6 shows all the peak mAP50-95, and Tukey's HSD test reveals that, for
the most part, there are no signi cant di erences between the models, except RT-
DETR, which was signi cantly di erent from all other models. These results reveal
that with respect to pure accuracy, no model surpasses all the others by some visible

margin.
[Table 6 about here.]

In recent years, the eld of deep learning has matured substantially due to sig-
ni cant developments; however, within computer vision, the task of object detection
remains particularly challenging (Dogra et al., 2024). While modern approaches
perform well on generic scenarios, more specialized and niche applications still face
numerous challenges, including background interference, occlusion, limited gener-
alization, dataset bias, computational e ciency, and real-time performance con-
straints (Li et al.,, 2024). In recent years, there has been an increase in the AP
from 30 % to 59.5 % on the COCO val dataset, but this remains largely unchanged
despite quite a lot of new detectors and new iterations of YOLO being released (Du
et al., 2021; Zong et al., 2023). Recent analyses suggest that this stagnation may
stem from inherent dataset limitations and annotation inconsistencies (Tschirschwitz
and Rodehorst, 2025). YOLOvV8x, which we used as the baseline model, performs
just as well as the newer iterations, and similarly, older iterations also still hold up.

It seems like a lot of current advancement focuses mainly on the deployment of such
models since the key metrics that are often compared when a new model is released
are the latency versus the mAP. That means, how fast is the prediction while still
keeping a certain level of accuracy. Also, the FLOPs versus the mAP is compared,
meaning the trade-o between accuracy and computational cost. This implies that

newer models often use fewer parameters, hence, are more lightweight and, thus,
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also have less computational costs. But in the end, overall raw accuracy does not
improve by a large margin (Tian et al., 2025a). For someone interested mainly in
the application of such models and their overall accuracy of predictions, this also
indicates that the selection of a model might be less important and should perhaps
be decided based on how easy it is to implement. Therefore, it is more important to
focus on having a large representative dataset and optimizing the model with regard
to hyperparameters since this will have the most signi cant impact (Deepak and
Bhat, 2025; Sun et al., 2017).

3.4. Detailed Analysis of one Model

[Figure 10 about here.]

As mentioned, the used models showed comparable accuracy on the use case;
hence, we focused on the most recent iteration in the YOLO family since that could
be considered state-of-the-art. Figure 10 displays, in addition to the mAP, the met-
rics recall, precision, and k-score, plotted over their con dence threshold. The
con dence threshold represents how sure the model is about the presence of an ob-
ject.

For the recall curve in Figure 10a, at low con dence levels, most predictions
are accepted by the mode. At a threshold of 0 %, for example, all predictions are
accepted, meaning the recall is at 100 %. However, this does not mean that the
predictions are correct. As con dence increases, the recall slowly drops, reaching
0 % at 100 % con dence, which is logical since that would mean the model needs
to be 100 % sure about this prediction. The curve for all classes remains over 80 %
recall up to a con dence of around 70 %. But then dropping sharply after the 80 %
con dence threshold is crossed. What also becomes evident is that the recall for the

imperfect product class remains pretty high even at con dence thresholds beyond
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80 %. On the other hand, the good product class lies below that. This could be
explained simply by our dataset (see Figure 6), where we have less instances of the
good product category.

The precision curve, which can be seen in Figure 10b, shows the precision of the
model at various con dence thresholds. So, for example, if con dence is at 0 %, the
model will output every possible detection, even the ones with low certainty. Hence,
as the con dence increases, the precision is bound to increase as well. At 100 %
con dence, predictions are only made when the model is absolutely certain. However,
it is important to note here that at that con dence level, the model will probably just
not return any predictions at all because it will never reach 100 % certainty for any
of them. We can see in the graph that even for low con dence scores close to 0O, the
model reaches precision scores of around 70 % for the imperfect product category
and around 50 % for the good product category. Since the good product category
is less represented in our dataset, it makes sense that we reach lower precision at a
low con dence threshold when compared to the imperfect product category. Hence,
when running inference on images, it would be sensible to increase the con dence
threshold to Iter out potentially wrong predictions.

To select an appropriate threshold, both the recall and the precision should be
considered, and one option is the fscore depicted in Figure 10c, which forms the
harmonic mean between precision and recall and considers them equally. So, it
balances the two main objectives of making correct detections while also nding the
most objects. The highest -score of 0.88 for both classes is achieved at a con dence
level of 0.356. The imperfect products category achieved highercores which
remained rather constant over all con dence levels, only dropping after crossing the
80 % con dence threshold. Compared to that, the curve for the good product

category starts slowly decreasing after the 40 % con dence threshold. Depending on
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the application of a model, recall or precision might be more important. In those
cases, the I-score can be replaced by calculating an Fscore (see Equation 3) that
ts the desired balance.

Lastly, the mAP50-95 is shown in Figure 10d over the trained epochs. Since the
MAP is a single metric for all classes, only one curve is plotted. The curve increases
sharply at the beginning and converges after approximately 10 epochs, reaching its
peak mAP of 0.9359 at epoch 88, as listed in Table 6. This re ects the model's
overall ability to detect objects across a range of loU thresholds.

Figure 11 shows the confusion matrices obtained after validation, one depicting
the absolute values and the other the normalized values. The absolute confusion
matrix shows the raw counts of predictions for each class, while the normalized con-
fusion matrix shows a percentage relative to the total number of samples in each
actual class. The Background class is not a separate class but gets added automat-
ically if, during the validation process, the model detects an object for which there
is no bounding box or misses an object, essentially representing false positives or
false negatives". For the good product category, we have a total of 2,768 instances,
2,092 were correctly predicted as such, which corresponds to 71 %. Then 667 of the
same class were wrongly placed into the imperfect product class. Regarding the
imperfect product class, the total amount of instances was 5,726, of which 5,425
were correctly predicted, which corresponds to 95 %. As it was already visible from
the other metrics, this class was the one most reliably predicted. Some misclassi ca-
tions occurred, namely, 547 objects were detected and placed in the good product
class, and 531 were predicted as imperfect product even though these belonged to
no category at all. For our use case, this error is not that detrimental since it ac-
counts for 11.2 % of all predictions. Still, it would be desirable to reduce this issue.

We already included 1 % background images containing no objects at all, as it is
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recommended by Ultralytics (Ultralytics, 2023). However, this did not improve the

issue. Another potential solution to reduce this problem could be the addition of
more images. However, this is a very time-intensive endeavor. Another possibility is
hyperparameter tuning, which has been shown to improve models without needing

more data and labeling (Deepak and Bhat, 2025).

[Figure 11 about here.]

[Figure 12 about here.]

We also ran inference (conf. threshold = 0.5) on a couple of images from the
validation dataset to visualize detections, including some of our own augmented
images (which were not used for the training of this model). This is depicted in
Figure 12. The model works quite well on the rst three images 12a - 12c. Here,
the model detected every object, and the predictions also had high con dence scores
of approximately. 0.7-0.9. But on a gray image, it began to struggle, not detecting
all instances and it completely failed on images where channel shu e was applied.
Those results show how important the training data is, and that if a model is not
trained on a certain edge case, it can fail even if that edge case isn't that much

di erent than the normal images by human standards.

3.5. Hyperparameter tuning with YOLO12x

In this subsection, we present the results from conducting hyperparameter tun-
ing using YOLO12x. The total runtime of the tuning was7 days, 15 hours, 31
minutes, and 49 seconds. After completion of all tuning iterations a yaml le

with the best parameters is generated which was used to train the tuned model. In
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Table 7, the hyperparameters that are used in the default model are compared to
the ones used for the tuned model.
[Table 7 about here.]

In the following, we present the performance metrics of the tuned model, following
a similar format to Section 3.4. The results are shown in Figure 13 and Figure 14.
When compared to the default models, it is evident that tuning did not lead to any
signi cant improvement in performance. We also evaluated the tness score, which
in the Ultralytics implementation is calculated as a weighted sum of the mAP50 and
the mAP50-95 as follows:

tness score=0:1 mMAP50+0:9 mAP50 95 (6)

This analysis aimed to determine whether there was any gradual improvement over
the course of hyperparameter tuning, or if the model performance had plateaued.
As shown in Figure 15, aside from three outliers, the model consistently achieved
very similar tness scores across all hyperparameter combinations. From this, we
conclude that additional tuning iterations are unlikely to yield improvements beyond

the current model's capabilities. We hypothesize that further performance gains may

only be achievable with a larger or more diverse dataset.
[Figure 13 about here.]
[Figure 14 about here.]

[Figure 15 about here.]

4. Threats to Validity

In this section, the limitations of this work will be explained. For most machine

learning tasks, the primary issues typically arise from the data used for training. In
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this work, 2,040 images with multiple products were labeled and used for training and
validation. This is not a huge amount of images, but since one person did it, labeling
even more images would have been too time-consuming (especially since images for
the other processing steps that were not part of this work had to be labeled as well).
However, more images might have already solved the misclassi cation issue that
occurred in this work. The relatively small dataset size limits the mode$ ability

to generalize to unseen cases, especially rare edge cases or shifts in the production
environment. Furthermore, the dataset may lack su cient diversity to re ect all
relevant real-world variations. Also, with 2,040 images, it is not unreasonable to
assume that the model might not have seen all possible variations and edge cases
that could occur in a longer running production. We did try to counteract this

by collecting and using data from di erent production days. Thus, we accounted
for changes in the overall production setup, di erent operators, and slight changes

in the raw material, among other possible variations. Additionally, for one of the
experiments, we applied data augmentation techniques and were able to increase the
dataset to 3,714 pictures.

Another issue is the consistency in labeling. Since one person did it, there might
be a bias toward what is considered a good product and what is considered an
imperfect product. Although two other people reviewed a sample of the labels
and con rmed their correctness, no quantitative assessment of inter-rater reliability
was conducted. In future work, including formal inter-rater reliability metrics would
enhance the credibility of the dataset. Clear labeling guidelines and multiple an-
notators can reduce bias and enhance label quality, while semi-automated or active
learning methods may lower manual e ort and improve consistency. However, as we
focused on binary classi cation, potential bias is less critical. Another issue is that

there might be slight environmental changes during production, which can in uence
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a model's nal performance. The dataset contained images from di erent production
days, which might account for some variation. However, if, for example, the lighting
changes signi cantly or even the product itself changes, the models would probably
reach their limits. The same is true if, for example, the camera position changes or
even the cameras themselves are replaced by another type of camera. Despite e orts
to vary image conditions, this still poses a risk to result validity. A signi cant con-
straint is that we did not conduct systematic hyperparameter tuning on all models.
We ne-tuned YOLOv12x (the model that performed best overall), but the other
models were assessed using their default settings. This has a natural e ect on how
fair the comparison is. The main reason for this decision was the amount of time and
computational resources required for thorough tuning, which exceeded the scope of

this work.

5. Conclusions

In this work, multiple object detectors were trained for the task of food quality
analysis and distinguishing good products from imperfect products . First, the re-
sults show that including augmentation in some way can be considered good practice
since it reduces over tting and increases the model's ability to generalize. For the
binary detection task presented in this work, most of the recent models that can be
considered state-of-the-art yield comparable results. The work also shows that out
of the box detectors can achieve very good results without the need for any mod-
i cations to the models' architecture. So training and deployment of such models
do not necessarily require years of expertise in the eld of Computer Science any-
more, unless everything should be built from scratch and tailored to the use case. So

this work demonstrates that object detection tasks can be solved with relatively low
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technical overhead, using open-source models and tools. This highlights a realistic
path for industrial adoption without the need for deep model customization.

Our hyperparameter tuning with YOLOv12x did not yield better results than
the default model. So the most essential part is acquiring a diverse dataset with
consistent labeling, the latter being the most time-consuming aspect of it all. In
general, it can be said that the larger and more diverse the dataset is, the better the
model will perform. The work also shows why it is necessary to look at other metrics
as well, since the misclassi cations issue that becomes evident in Figure 11 would
not be visible if we only looked at metrics like mAP, precision, recall, or;Fscore. A
potential solution for the issue could be an increased dataset size, which would be
very time-intensive.

A key contribution of this study is the use of real-world data collected during
live poultry production, o ering a rare look at model performance under operational
conditions rather than in a controlled lab environment. This adds practical relevance
and re ects challenges such as noise, motion blur, and product variation. To the
best of our knowledge, this study presents the rst applied comparison of YOLOv11,
YOLOv12, and DFine models within the food quality inspection domain, providing
a valuable foundation for future research in real-world food processing environments

Furthermore, future work could include the training of models to not only discern
between good and imperfect products , but also classify the imperfect product into
more speci ¢ categories as it was also shown in Figure 4 (e.g., this product has a
dark particle, this product has a hole, etc.). It would also be interesting to see
how easily the results of this work can be transferred to the other processing steps,
since, as shown in Figure 2 for this work, only the images of the forming step were
used. Another promising direction for future work lies in leveraging the temporal

nature of the image data. Since the camera is mounted on a moving production
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belt, each product is typically captured multiple times from slightly di erent per-
spectives. This temporal redundancy could be exploited by aggregating predictions
across consecutive frames, potentially increasing the robustness and accuracy of the
guality assessment. Integrating the results into digital food twins might be ben-

e cial for tracing the status of the products throughout the production (Henrichs

et al., 2022; Krupitzer et al., 2022). Further, we plan to correlate the state of the
products, analyzed through computer vision, with state-of-the-art machine learning

techniques (Jox et al., 2025) for root cause analysis.
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Images after forming

................. }

Figure 2: Process line of fried chicken products. The camera symbols () show where images were
taken. The dashed box shows that the focus was foremost on the forming production step for this
work.
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Figure 3: Bounding boxes (red frame around poulty products) generated by GroundingDINO.
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___________________________________________

Figure 4: Depiction of a couple of product defects.(a) Lips, which are an unwanted change of the
shape,(b) berous rims which are bers extending from the product, (c) edge cavities which are
missing lling at the side of the product, (d) center cavities are missing lling in the middle of the
product, (e) holes which go through the entire product, and(f) dark particles. On the right, a
good product can be seen.
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(a) Horizontal ip (b) Brightness change

(c) Color to gray (d) Channel shu e

Figure 5: This gure displays four exemplary augmentations (based on originals, which are not
shown) that can be applied to increase the size of a dataset, based on Listing 3 in Einsiedel et al.
(2025). The rst augmentation in Sub gure 5a is a simple horizontal ip, basically a mirror image

of the original. The augmentation in Sub gure 5b changes the brightness/contrast of the original,
resulting in a lighter or darker image. Sub gure 5c shows a simple conversion of the image to a
grayscale, while Sub gure 5d depicts the random shu ing of color channels.
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Figure 6: Structure of the dataset before and after augmentation. A total of 2040 original images
was built, containing a total of 43,137 products. Of those products, 14,026 belonged to the good
product class and 29,111 to the imperfect product class. Augmentation helped to almost double

those numbers.
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(&) mAP of YOLOV8x trained from scratch and using (b) Validation loss of YOLOv8x trained from scratch
pretrained weights and using pretrained weights

Figure 7: Comparison of YOLOv8x models trained from scratch (red) and ne-tuned (orange) using
pretrained weights. Figure (a) shows the mAP across the training epochs, while Figure (b) shows
the validation loss.
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Figure 8: YOLOvV8x models trained using the included augmentations (orange), custom augmen-
tations (blue), and no augmentations (green).
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Figure 9: Comparison of all trained models across a training period of 100 epochs. The model size
was set to the biggest available with pretrained weights.
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(a) Recall-Con dence curve (b) Precision-Con dence curve

(c) F 1-score curve (d) mAP50-95 curve

Figure 10: This gure displays the di erent performance metrics for the ne-tuned YOLO12x model
and the respective classes. In 10a the recall of the model is plotted against the con dence, in 10b
the same was done with precision. In 10c, the Fscore is plotted. In 10d, the overall mMAP50-95 is

plotted over the epochs.
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(a) Confusion matrix absolute values (b) Confusion matrix normalized

Figure 11: This gure displays the confusion matrices obtained after validation. The left gure
shows the confusion matrix with absolute values, while the right displays the normalized confusion
matrix.
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