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• Computer vision was applied to assess quality of ready-to-eat meat products.

• Models reliably distinguished between “good” and “imperfect” products based

on visual quality deviations.

• High detection accuracy (mAP50-95 > 0.9) demonstrates the feasibility of au-

tomated visual inspection in food processing.

• Balanced and consistently labeled datasets are critical for reliable food quality

control in practice.
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Abstract

This study explores the use of computer vision, specifically object detection, for

quality control in ready-to-eat meat products. We focused on a single process step,

labeling products as “good” or “imperfect”. An “imperfect product” constitutes a

product that deviates from the norm regarding shape, size, or color (having a hole,

missing edges, dark particles, etc.). Imperfect does not mean the product is inedible

or a risk to food safety, but it affects the overall product quality. Various object

detectors, such as YOLO, including YOLO12, were compared using the mAP50-95

metric. Most models achieved mAP scores over 0.9, with YOLO12 reaching a peak

score of 0.9359. The precision and recall curves indicated that the model learned the

“imperfect product” class better, most likely due to its higher representation. This

underscores the importance of a balanced dataset, which is challenging to achieve

in real-world settings. The confusion matrix revealed false positives, suggesting that
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increasing dataset volume or hyperparameter tuning could help. However, increasing

the dataset volume is usually the more difficult path since data acquisition and

especially labeling are by far the most time-consuming steps of the whole process.

Overall, current models can be applied to quality control tasks with some margin

of error. Our experiments show that high-quality, consistently labeled datasets are

potentially more important than the choice of the model for achieving good results.

The applied hyperparameter tuning on the YOLO12 model did not outperform the

default model in this case. Future work could involve training models on a multi-class

dataset with hyperparameter optimization. A multi-class dataset could contain more

specific classes than just “good” and “imperfect,” making trained models capable of

actually predicting specific quality deviations.

Keywords: Food quality, Computer vision, Object detection, Neural networks
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2000 MSC: 0000, 1111

1. Introduction1

With an ever-increasing world population and various crises affecting human-2

ity, advancements across the entire food supply chain are necessary to secure food3

production and maintain food safety and quality in the future (Krupitzer and Stein,4

2024). In recent years, the world has seen significant progress in the areas of artificial5

intelligence leveraged by machine learning methods (Kakani et al., 2020). This leads6

to the question of how these developments can be used to enhance food production.7

One important aspect of food production is food quality control, which still often8

relies on humans doing the evaluation. This is costly on one side and also prone to9

errors due to the influence of physiological factors, especially when it comes to tasks10

such as visual inspection (Du and Sun, 2006). Computer vision in itself is not a11
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new concept and has been employed in various areas such as medicine (Esteva et al.,12

2021), autonomous driving (Dong and Cappuccio, 2024), security monitoring (John-13

son, 2023) but also to some degree in agriculture and food production (Ma et al.,14

2024; Zhu et al., 2021). While earlier computer vision tasks were primarily focused15

on basic image processing, today’s computer vision models are significantly more16

sophisticated (Laad et al., 2024). This advancement is largely due to the increase in17

computational power and the availability of large datasets, which enable the training18

of complex models capable of handling intricate visual data (Laad et al., 2024).19

Most modern computer vision models are currently based on neural networks,20

more specifically, the established convolutional neural networks (CNNs) but also the21

more recent vision transformers (ViTs) (Li and Zhang, 2024). The main difference22

between these two architectures is how they treat the input images. CNNs use, as23

the name indicates, convolutional layers to process images in a spatially localized24

manner, while ViTs treat images as a sequence of tokens, also leveraging a self-25

attention mechanism to keep long-range dependencies (Haruna et al., 2025). Both26

ViTs and CNNs have already been used for various tasks related to food quality,27

for example for the detection of diseases in tomatoes (Simonyan and Zisserman,28

2015), classification and identification of olives (Salvucci et al., 2022), classification29

of red meat based on its freshness (Bajpai et al., 2024), or identification of poultry30

diseases (Vrindavanam et al., 2024). However, most existing studies in this field are31

limited in two key aspects: they are typically conducted in controlled laboratory32

environments and often focus on evaluating a single model architecture. This limits33

their generalizability and practical applicability in real-world production settings. In34

contrast, our study addresses this gap by applying and comparing several cutting-35

edge object detection models, on data collected directly from a running poultry36

production process.37
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The goal of this work was to implement and compare different computer vision38

models to find out which ones perform best in the task of distinguishing “good”39

products from “imperfect” products. Another important aspect of this work was how40

simple the implementation of such models is for someone without specific domain41

knowledge in computer vision.42

While this work does not introduce a novel model architecture or algorithmic ad-43

vancement, its contribution lies in the application of state-of-the-art object detection44

models to a real-world industrial setting. Unlike many studies that rely on standard-45

ized or laboratory-collected datasets, our data was gathered during live production46

at a poultry processing facility, reflecting realistic visual variability and operational47

conditions. This practical grounding, combined with a comparative evaluation of48

several recent models, including YOLOv10 through YOLOv12 and DFine, addresses49

a gap in applied computer vision literature, particularly within the underexplored do-50

main of food processing environments. To the best of our knowledge, this is the first51

study to apply some of these state-of-the-art models in a real-world food production52

environment.53

First, the images were collected on-site using cameras mounted on a production54

belt. The images were then preprocessed, meaning bounding boxes and labels were55

added to the images, which is necessary to train a model. Different models were56

chosen, which was mainly based on how recent, popular, and easy to implement57

the models were. The models were trained and evaluated using our dataset and58

subsequently compared to each other using the mAP50-95 metric. Determined by59

this comparison, we examined the “best” model by using additional performance60

metrics for this purpose. The paper is structured as follows: In Section 2, our overall61

approach is explained; this includes an explanation of the production process where62

the images came from, as well as a more detailed explanation of how a machine63
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learning task like this is tackled and how the evaluation was done. Section 3 presents64

the results of the experiments and discusses them. Section 3.1 and 3.2 focus on some65

preliminary experiments that were conducted as a set-up for the main comparison.66

The comparison of multiple models is described in Section 3.3, these results directly67

lead to Section 3.4 where the most promising (or recent) model was examined more68

closely. In Section 4, potential threats to validity are brought forward. Finally, in69

Section 5, the �ndings are summarized, drawing a conclusion and giving an outlook70

on potential future aspects of the work.71

2. Materials and Methods72

This section describes our approach and how we implemented the various steps.73

The �owchart shown in Figure 1 provides an overview of how a machine learning74

task is usually tackled. We also followed this approach and will explain it in the75

following in detail.76

[Figure 1 about here.]77

The �rst step, as simple as it may sound, is to understand the underlying problem78

to be solved. In this study, the problem can be described as an object detection task.79

Objects, namely chicken products on a belt, should be individually localized and then80

a label should be assigned, sorting them into the correct class. This already narrows81

down which models can be used and also means that the necessary data comes in82

the form of images. The next step is data collection and for machine learning it is83

essential to collect as much relevant data as somehow possible. After enough data84

is collected, the data needs to be cleaned. This step varies depending on what kind85

of data is used. In the case of image data, it means selecting relevant images and86

building a training dataset for the machine learning task. Afterwards, the images are87

5



checked (�le type, duplicates, etc.) and then brought into the format expected by88

the algorithm. This often happens with the next step already in mind, which is the89

model selection. Most models have certain parameters that can be adjusted, which90

might be necessary depending on the input. Afterwards, the model is trained and91

the results are evaluated using the various metrics mentioned in Section 2.1. Usually,92

multiple models are �rst tested, and the best one is selected before switching from93

the �O�ine-phase� to the �Online-phase,� in which a model is deployed and used.94

This work only includes the �rst phase, which will be explained thoroughly on the95

presented use case, including the implementation.96

Data collection: To collect enough data, camera systems were installed after97

various steps over the belt of a running process line as displayed in Figure 2. Each98

camera system featured two cameras. In total, there are four camera systems in99

the process, all equipped with two cameras and a powerful light source to ensure100

consistent lighting. Due to this setup, the camera's angle and distance to the belt101

were �xed, so the cameras were used as intended for customer use. Additionally,102

since the data collection happened in an active process environment during regular103

production, no changes could be made regarding the environment or test setup.104

While this setup does not allow extensive experimentation, it does produce real-world105

data from an actual production process with no alteration and consistent data even106

over multiple production days. The cameras were run on three di�erent production107

days for approximately. 30 minutes to 1 hour each, collecting between 2,000 and108

10,000 images per production step. The camera symbols (‚ ) in Figure 2 show the109

places where images were continuously taken.110

The analyzed process includes the following steps: First, the raw meat mass is111

�lled into a pump, which applies it into forming moulds of the forming machine.112

Second, the formed product is ejected on the production belt, and liquid batter is113
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applied, which acts as an adhesive for the following coating. Then, the product gets114

par-fried and cooked in an oven, which �nally results in a ready-to-eat product. For115

this work, we only focused on the forming production step.116

[Figure 2 about here.]117

Data Analysis and Preprocessing: First, we used GroundingDINO (Liu et al.,118

2025), which essentially generates bounding boxes automatically using a text-prompt119

as input. Bounding boxes are rectangular boxes that de�ne the size and position of120

an object within a picture (see Figure 3, the red boxes). Bounding boxes are needed121

for the models to understand where the objects are located so that they know what122

the regions of interest are, and to learn the objects within them.123

[Figure 3 about here.]124

An example of an image processed with GroundingDINO is depicted in Figure 3.125

The image processing works quite well and reduces the work for manual annotation126

considerably. The �gure also shows that this process is not always perfect, e.g., the127

top row of chicken products does not have bounding boxes, so manual intervention is128

still needed. The bounding box information generated by GroundingDINO is saved129

to JSON�les, which can then be imported to a labeling software. We used the open130

source tool Label Studio as labeling software. Using Label Studio, the images were131

labeled manually and sorted into classes (see Figure A1 in Einsiedel et al. (2025)).132

An example of what is considered a �good� product and what would be considered133

�imperfect� is shown in Figure 4. It is important to note that we chose the class134

name �imperfect product� since sorting out or throwing away those products is not135

necessarily required. They just deviate in some visible way from what might be136

expected of that product regarding shape or color, among other aspects.137
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[Figure 4 about here.]138

After all images are labeled, they can be exported in various formats, such as the139

YOLO format, the COCO format, and Pascal VOC, to support di�erent machine140

learning frameworks for further analysis. For our models, only the �rst two are rel-141

evant. The YOLO format has a correspondingtxt �le for each image, meaning for142

a image1.png, a correspondingimage1.txt �le containing a class ID representing143

the class (e.g., 0 = good product, 1 = imperfect product). In comparison to that,144

the COCO format is usually one singularJSON�le containing the image names as145

well as the bounding box information for the entire dataset (see Listing 1 and List-146

ing 2 in Einsiedel et al. (2025)). Using the label �les, the succeeding steps of the147

machine learning analysis could be performed. However, it is recommended that the148

di�erent classes be balanced in size, i.e., the number of pictures should be similar.149

In cases with an imbalanced size of items, there is the optional step of augmenting150

the images.151

Data augmentation is a method used not only in computer vision but in machine152

learning analysis in general. It in�ates the data set by applying various transfor-153

mations to the input data. In the case of images, it can be operations like �ipping154

the image, changing its brightness, and shu�ing the color channels, among other155

operations. The method is useful to tackle common problems such as �over�tting�156

while also making the model more robust (Shorten and Khoshgoftaar, 2019). For157

image augmentation, there are libraries such asalbumentations , which provide var-158

ious augmentation techniques for images (see Listing 3 in Einsiedel et al. (2025). In159

our study, we experimented with custom augmentation, which included horizontal160

�ipping, random brightness and contrast adjustment, grayscale conversion, and chan-161

nel shu�ing. These augmentations were selected to mimic plausible variations that162
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may occur in practice due to changes in product orientation, lighting �uctuations,163

or sensor-related artifacts. They also include some very extreme changes, such as164

channel shu�ing, even though the latter is probably not something that realistically165

occurs. The results of the augmentations are depicted in Figure 5. It is essential to166

remember that corresponding label �les need to be created for the augmented images167

as well.168

[Figure 5 about here.]169

Once the images and label �les are in the correct format, the dataset is split170

into a training and validation subset. In this study, a 0.8 split was chosen, meaning171

80 % of the images were used for training, while 20 % were used to validate the172

model. The 80:20 split has been widely used, and in our case (with 2040 images),173

it would mean the model gets trained on 1632 images, while 408 are reserved for174

validation. This split ratio is also recommended by TensorFlow in their tutorial175

for image classi�cation (tensor�ow, 2019). However, it depends on the size of the176

dataset. For larger datasets, for example, a 0.9 split might also be appropriate.177

Model Selection: The model selection in this study was even done before the178

preprocessing, since it determined how to format the data. For this work, we chose179

di�erent versions of YOLO, most of them by Ultralytics, due to their easy imple-180

mentation and �ne-tuning capabilities, from YOLOv5 (Jocher, 2020) up to the most181

recent YOLO12 (Jocher et al., 2023). YOLO has been used for applications in food182

quality control to some degree. For example, YOLOv3 has been implemented for183

a mobile food grading system to detect defects on the peel of bananas (Zhu and184

Spachos, 2021). YOLOv5 has been used to detect impurities among walnut kernels185

on a belt, and YOLOv8 has been proposed for the detection of spoilage with a focus186

on fruits (Dhelia et al., 2024; Yu et al., 2023). Most of the research using YOLO187
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in the context of food seems to be on agricultural and farm-level applications rather188

than processed foods. We did not include all YOLO models since there have been189

many new developments over the last couple of years, and we wanted to focus more190

on the state-of-the-art. Also, older repositories are often no longer maintained and191

sometimes create issues with, e.g., newer software and dependencies. Since ViTs192

are also becoming more popular, we also trained two of those architectures, namely193

RT-DETR (Zhao et al., 2024) and D-FINE (Peng et al., 2025). ViTs have been exam-194

ined in the food context as well, for example, for classifying mushrooms (to prevent195

people from consuming poisonous mushrooms) or for disease detection in strawber-196

ries (Aghamohammadesmaeilketabforoosh et al., 2024; Wang, 2022). RT-DETR has197

been used for ripeness detection of tomatoes (Wang et al., 2024b). However, the198

research for ViTs in the food sector is currently rather limited. We chose RT-DETR199

from Ultralytics because we could train it with very few modi�cations using our200

training set-up from the YOLO models. Furthermore, this makes it easy to compare201

it to the other models provided by Ultralytics. D-FINE was chosen because it is one202

of the most recent ViT detectors, having been released in October 2024.203

Model Con�guration : Most object detection models have a couple of con�gu-204

rations that can be adjusted. So, in the following, the most common ones that are205

usually speci�ed in the training command will be explained:206

ˆ Image size: The image size determines the dimensions of the input. All images207

will usually be resized to this size to get a uniform input. A higher resolution208

is often desirable, but training on higher resolutions becomes computationally209

intensive very fast.210

ˆ Epoch: An epoch refers to one pass of the entire dataset through the model.211

For example, 100 epochs mean that the model �sees� the entire dataset 100212
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times during training. This allows the model to re�ne and adjust its weights213

incrementally. If the number of epochs is set too low, the model might not per-214

form ideally, while too many epochs can lead to �over-training,� which impacts215

the model's ability to generalize.216

ˆ Batch size: The batch size determines the number of images that are pro-217

cessed together as a �group� during one forward and backward pass. This218

means if you have 1,000 images and a batch size of 8, then 8 images are always219

fed at once to the model, and after 125 batches, one epoch is completed. Larger220

batch sizes allow faster training. However, it is also computationally intensive,221

so batch sizes are usually in the range of 8-32.222

Besides that, most models also have a hyperparameter �le containing additional223

parameters (such as learning rate, weight-decay, built-in augmentation operations,224

etc.). They can be manually tweaked or adjusted via hyperparameter tuning to225

further improve performance. For our experiments, we mainly applied the suggested226

default parameters of each model and only adjusted epochs and batch sizes when227

necessary. However, this will be discussed in more detail in Section 2.2.228

Model training : After the appropriate con�gurations have been chosen, the229

model can be trained. Usually, the training script is called, and optional pretrained230

weights are passed, along with the desired con�gurations and the path to the dataset231

(see Listing 4 in Einsiedel et al. (2025)).232

Model evaluation: The model evaluation takes place after and sometimes even233

during training between epochs. For evaluation, the validation dataset is used, which234

consists of labeled images the model has not �seen� during training. The model tries235

to predict the bounding boxes and their corresponding labels and then compares236

them to the ground truth. Based on that, various performance metrics are calculated,237
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which are further discussed in Section 2.1. Everything after the evaluation is part of238

the �Online Phase� and will not be covered in this work.239

2.1. Performance metrics240

Di�erent metrics exist to evaluate machine learning models and give insight into241

their performance. Often, it is best to consider multiple metrics since no metric242

covers every aspect. The following presents a couple of the most popular metrics in243

computer vision, some of which are also used in this work. Table 1 summarizes the244

de�nition of true positives (TP), false negatives (FN), true negatives (TN), and false245

positives (FP), which are used in various metrics.246

[Table 1 about here.]247

Precision: Precision measures the number of correctly retrieved instances di-248

vided by the total number of retrieved instances (Dalianis, 2018). So, as an example,249

how many �imperfect products� were correctly classi�ed as such. The equation for250

precision is shown in Equation 1.251

Precision: P =
TP

TP + FP
(1)

Recall: Recall measures the number of correctly retrieved instances divided by252

the total number of correct instances (Dalianis, 2018). Equation 2 is used for the253

calculation of recall.254

Recall : R =
TP

TP + FN
(2)

F � -score: The F� -score calculates the harmonic mean of precision and recall (Dalia-255

nis, 2018). Equation 3 shows how the F� -score is de�ned. The parameter� deter-256
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mines the importance of precision or recall (Jiang et al., 2022). In this work,� is set257

to 1, indicating that precision and recall are considered equally important.258

F� = (1 + � 2) �
Precision� Recall

(� 2 � Precision) + Recall
(3)

Intersection over union (IoU): Intersection over union is the ratio of the area259

of overlap to the area of union between the predicted bounding box and the ground260

truth bounding box (Terven et al., 2023). IoU is used as a metric for assessing the261

quality of predicted bounding boxes, particularly in the �eld of object detection,262

which is the focus of this work, making it a crucial metric (Stodt et al., 2023). The263

IoU can be calculated using Equation 4 (Hua, 2018). IoU primarily evaluates the264

detection of predicted bounding boxes rather than the classi�cation of products.265

Hence, it allows us to evaluate how accurately the model detects and localizes the266

chicken products within the image.267

IoU =
A \ B
A [ B

(4)

Mean average precision (mAP): The average precision (AP) represents the268

area under the precision-recall curve, evaluated at a speci�c IoU threshold (Li et al.,269

2023b) and is calculated for each class individually, whereas the mAP provides the270

average of the computed AP values across all classes (Li et al., 2023b). Often, the271

distinction between mAP and AP is no longer made, leading to the frequent use of272

the term mAP. Frequently used are mAP50, mAP75, and mAP50-95, the �rst two273

are the mAP evaluated at an IoU threshold of 0.5 and 0.75 respectively, while the last274

one is evaluated over a range of IoUs starting from 0.5 to 0.95 in steps of 0.05 (Reis275

et al., 2024). The mAP is calculated according to Equation 5.276
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mAP =
P k

i =1 AP i

k
for k classes (5)

Confusion matrix: The confusion matrix is used to obtain more detailed infor-277

mation about the performance of the model (Gajjar and Jethva, 2022). It allows us278

to infer how many instances of a speci�c class were correctly classi�ed or misclassi�ed279

as other classes (Gajjar and Jethva, 2022).280

2.2. Experimental set-up281

In the following, the overall set-up for the experiment will be explained. This282

will include a short explanation of the dataset and list the various models used and283

how they were compared. The models were trained using an NVIDIA TeslaV100284

graphics card with 32 GB of VRAM on a virtual machine with an AMD EPYC 7452285

Dotriaconta-core (32 Core) CPU, 16 GB of RAM using Ubuntu 22.04.5 LTS as OS286

and Python 3.10.12.287

Dataset: As already mentioned, the images used for training the models were288

captured after the forming processing step on a production line for ready-to-eat289

chicken products, as depicted in Figure 2. The used data is a combination of images290

recorded on the production days, August 2, 2023, November 8, 2023, and January291

31, 2024. The images were collected during the live production of corn�akes-coated292

chicken escalopes. From the captured images, 2,040 were labeled and used for the293

subsequent training of the models. Additionally, 40 images containing only back-294

ground were added. We also applied augmentation based on probability (see List-295

ing 3 in Einsiedel et al. (2025)) to the images to further increase the dataset size.296

This was done according to Listing 3 in Einsiedel et al. (2025), where augmentations297

are applied with a certain probability. We chose 50 % for horizontal �ip since that298

doesn't change the images dramatically while still providing some variation. The299
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other probabilities for the other augmentations were set to 20 % to provide some300

edge case examples. In Figure 6, the structure of the dataset is shown.301

[Figure 6 about here.]302

Preliminary experiments: When this study was started, YOLOv8 was the303

most recent version. In this study, we used it as a baseline model to start the304

experiments and explore how di�erent approaches in�uence the training. In the305

�rst experiment, we trained a YOLOv8 model from scratch and one with pretrained306

weights. We used YOLOv8x as the largest YOLOv8 model with the default settings307

recommended by Ultralytics, which are an image size of 640, a batch size of 16, and308

300 epochs. Using the results from that experiment, we also compared how our own309

augmented images in�uence the training process by training a YOLOv8x model with310

and without them. Be aware that most models do apply their own augmentations311

during training. We, however, wanted to see the e�ect of what happens when we312

include our own augmented images. To compare the models, we used the mAP50-95,313

which is commonly used for that. Table 2 shows the setup. From the results of these314

experiments, we derive the settings for further analyses. Section 3.1 and Section 3.2315

present the results of the preliminary experiments.316

[Table 2 about here.]317

Comparison of di�erent models: We trained several models and compared318

their mAPs after training to examine di�erences between them. Based on the results319

from the preliminary experiments, we chose to use pretrained models when available,320

and if possible, we used the largest model size. We also tried to use similar settings321

for all models while adhering to the repositories' recommendations. Some of the322

models were more di�cult to implement and computationally more intensive, which323
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means that in those cases, we adjusted them so that we could still run them with the324

available resources. Table 3 lists the complete list of trained models, including their325

settings. Section 3.3 shows and discusses the results of the models' comparison.326

[Table 3 about here.]327

We also explored the best model(s) using additional performance metrics besides328

the mAP, such as precision, recall, the F1-score, and the confusion matrix. The329

selection of the best model(s) was based on their achieved mAP50-95 as well as330

factors such as the model's recentness and user-friendliness.331

Additionally, Tukey's HSD was performed to �nd out which of the models di�er332

signi�cantly from each other (Tukey, 1949). The level of signi�cance was set to333

� = 0:05. To calculate the pairwise di�erences, thestatsmodels library in Python334

was used. Section 3.4 elaborates on the details of the best-performing model. To335

calculate the di�erence all mAPs over the training epoch were considered.336

Hyperparameter tuning of the best model: We conducted hyperparameter337

tuning of our top model, which was done with Ultralytics' integratedtuner class. To338

see whether this further improves the model compared to what it achieves with the339

default setting. The aim is to see whether this further improves the model compared340

to the results achieved with the default setting. This automated process trains the341

model over multiple iterations, applying a mutation of the hyperparameters after each342

training. As stated on their website, a genetic algorithm is used for this purpose.343

1. We implemented it according to their documentation; the structure of our tune344

command can be found in Listing 5 in Einsiedel et al. (2025). The epochs were set345

1(https://docs.ultralytics.com/de/guides/hyperparameter-tuning/

#what-are-hyperparameters )
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to 100. While Ultralytics used 300 iterations in their example, we reduced this to346

100, as otherwise the runtime would increase signi�cantly.347

3. Results and Discussion348

This section explains and discusses the results of the experiments. First, we349

describe the results of the experiments that were conducted at the beginning to350

understand the in�uence of pretraining (see Section 3.1) and data augmentation (see351

Section 3.2) using the YOLOv8x models. Second, Section 3.3 compares di�erent352

models using the mAP50-95 as key metric. Third, Section 3.4 evaluates the best353

model by including additional performance metrics.354

3.1. Preliminary Experiments: Fine-tuned Model vs. Model Trained from Scratch355

As shown in Table 2, we started by training YOLOv8x on our dataset with the356

default settings. One model was initialized with pretrained weights; the other was357

trained from scratch. Figure 7a shows that the pretrained model surpasses the one358

trained from scratch very fast, which should not be surprising since it has already359

been trained on a dataset with other objects. The curve also shows that it converges360

faster than the model trained from scratch; however, it also runs into over�tting361

visibly earlier, ultimately falling beneath the curve of the model trained from scratch362

at later epochs.363

To train an ML model, a function is needed that provides a measure of the364

algorithm's performance (Ciampiconi et al., 2024). Loss functions are functions in365

ML that we want to minimize in order to optimize the model (Goodfellow et al.,366

2016, p. 80). The validation loss is calculated on the validation dataset and helps367

to detect over�tting. Di�erent loss functions exist depending on the type of task or368

application (Wang et al., 2022). The over�tting can also be observed in Figure 7b,369
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where the validation loss curve increases towards the end for both models. The370

increase happens around the same epoch as the mAP starts decreasing. Important371

to mention is that while the epochs for the training were set to 300, the training was372

interrupted early in both instances. This is due to the so-calledpatience parameter,373

which was set to 100, i.e., if the validation loss does not improve for 100 consecutive374

epochs, training is halted, serving as an early stopping mechanism.375

[Figure 7 about here.]376

As shown in Table 4, the di�erences between the two models are not statisti-377

cally signi�cant. We did limit the epochs to 100 to prevent a drop in the model's378

performance and to reduce overall training time. This approach could be compared379

to �early-stopping,� which is widely used in practice to mitigate over�tting in deep380

learning (Hussein and Shareef, 2024).381

[Table 4 about here.]382

These results are also in line with other �ndings, which show that pretrained383

models converge faster, but they also show that, while training from scratch might384

take a bit longer to converge, the overall results are often similar (He et al., 2019).385

Additionally, a study observed that while pretraining may not always improve the386

model on the classic performance metrics, it may still improve the robustness and387

uncertainty estimates (Hendrycks et al., 2019). Considering those observations and388

taking our results into account, we decided to use the pretrained models for model389

comparison.390

3.2. Preliminary Experiments: In�uence of Data Augmentation391

The next experiment was conducted to determine the in�uence of data augmen-392

tations on the mAP. So, we used the yolov8x.pt model and �ne-tuned it without any393
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augmentations and once with our own augmentations as speci�ed in Listing 3 in Ein-394

siedel et al. (2025), comparing it to the default model (yolov8x.pt).395

[Figure 8 about here.]396

As we see in Figure 8, the model trained with custom augmentations reached a397

peak mAP of 0.9243, and the one trained without any augmentations reached a peak398

mAP of 0.9262, while the default model reached a peak mAP of 0.9320. However,399

while the default model converges more slowly at the start, it also does seem to remain400

rather stable over more training epochs, whereas the other two models, especially401

the one without any augmentations, drop o� after reaching their peak. This can,402

as previously determined, be a sign of over�tting. With the mosaic augmentation,403

the default model applies one of the more sophisticated augmentation techniques404

to the data, which might be a reason for over�tting to occur later. For the custom405

augmentations, it happens earlier, and the model without any augmentations over�ts406

after around 35-40 epochs. Table 5 provides a summary of the achieved peak mAPs407

of each model and the respective epoch in which it was achieved. It also shows that408

there are signi�cant di�erences between the default yolov8x.pt model and the one409

trained without augmentations.410

This experiment indicates that augmentations indeed in�uence the training pro-411

cess, and the type of augmentation seems to play a role. This is also con�rmed412

by (Kumar and Muhammad, 2023) and (Modak and Stein, 2025), where di�erent413

augmentation combinations were used, resulting in di�erent mAP scores. Addition-414

ally, it also shows that augmentation is an e�ective and rather easy-to-implement415

regularization technique to prevent over�tting (Santos and Papa, 2022). Using own416

augmentations (or changing the augmentation settings in the model) might poten-417

tially yield better results than using the default settings prede�ned by the model.418
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Even though the model without augmentations also reached very good mAP values,419

it might still be a good choice to include some augmentations to increase the model's420

generalization abilities (Shorten and Khoshgoftaar, 2019). A model that has been421

trained on augmented images might be superior if the environment changes even422

slightly (e.g., lighting).423

These results show that object detectors such as YOLO can work quite well424

straight �out of the box�. So, tweaking the model or doing hyperparameter tuning425

might not always be necessary unless it is absolutely critical to reach the highest426

possible mAP.427

[Table 5 about here.]428

3.3. Comparison of Di�erent Models429

The following section shows the results of comparing various iterations of YOLO430

among two other detectors (D-FINE and RT-DETR). In order to compare them, the431

biggest model size was used for all of them. We used pretrained weights and, to432

allow a baseline comparison, we also tried to train them (as far as possible) on their433

default settings, as shown in Table 3. The results are shown in Figure 9. The curve434

for the RT-DETR is visible below the other curves over the proposed training epochs435

and it also reached the lowest peak mAP with 0.8270. Compared to D-FINE, which436

is based on RT-DETR, D-FINE performs signi�cantly better, reaching a peak mAP437

of 0.9284. The highest mAP overall was achieved by YOLO11x, closely followed438

by YOLO12x, with 0.9361 and 0.9359, respectively. However, what becomes quite439

evident when looking at these curves is that all of these models reach very similar440

mAPs for the given task.441

[Figure 9 about here.]442
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Table 6 shows all the peak mAP50-95, and Tukey's HSD test reveals that, for443

the most part, there are no signi�cant di�erences between the models, except RT-444

DETR, which was signi�cantly di�erent from all other models. These results reveal445

that with respect to pure accuracy, no model surpasses all the others by some visible446

margin.447

[Table 6 about here.]448

In recent years, the �eld of deep learning has matured substantially due to sig-449

ni�cant developments; however, within computer vision, the task of object detection450

remains particularly challenging (Dogra et al., 2024). While modern approaches451

perform well on generic scenarios, more specialized and niche applications still face452

numerous challenges, including background interference, occlusion, limited gener-453

alization, dataset bias, computational e�ciency, and real-time performance con-454

straints (Li et al., 2024). In recent years, there has been an increase in the AP455

from 30 % to 59.5 % on the COCO val dataset, but this remains largely unchanged456

despite quite a lot of new detectors and new iterations of YOLO being released (Du457

et al., 2021; Zong et al., 2023). Recent analyses suggest that this stagnation may458

stem from inherent dataset limitations and annotation inconsistencies (Tschirschwitz459

and Rodehorst, 2025). YOLOv8x, which we used as the baseline model, performs460

just as well as the newer iterations, and similarly, older iterations also still hold up.461

It seems like a lot of current advancement focuses mainly on the deployment of such462

models since the key metrics that are often compared when a new model is released463

are the latency versus the mAP. That means, how fast is the prediction while still464

keeping a certain level of accuracy. Also, the FLOPs versus the mAP is compared,465

meaning the trade-o� between accuracy and computational cost. This implies that466

newer models often use fewer parameters, hence, are more lightweight and, thus,467
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also have less computational costs. But in the end, overall raw accuracy does not468

improve by a large margin (Tian et al., 2025a). For someone interested mainly in469

the application of such models and their overall accuracy of predictions, this also470

indicates that the selection of a model might be less important and should perhaps471

be decided based on how easy it is to implement. Therefore, it is more important to472

focus on having a large representative dataset and optimizing the model with regard473

to hyperparameters since this will have the most signi�cant impact (Deepak and474

Bhat, 2025; Sun et al., 2017).475

3.4. Detailed Analysis of one Model476

[Figure 10 about here.]477

As mentioned, the used models showed comparable accuracy on the use case;478

hence, we focused on the most recent iteration in the YOLO family since that could479

be considered state-of-the-art. Figure 10 displays, in addition to the mAP, the met-480

rics recall, precision, and F1-score, plotted over their con�dence threshold. The481

con�dence threshold represents how sure the model is about the presence of an ob-482

ject.483

For the recall curve in Figure 10a, at low con�dence levels, most predictions484

are accepted by the mode. At a threshold of 0 %, for example, all predictions are485

accepted, meaning the recall is at 100 %. However, this does not mean that the486

predictions are correct. As con�dence increases, the recall slowly drops, reaching487

0 % at 100 % con�dence, which is logical since that would mean the model needs488

to be 100 % sure about this prediction. The curve for all classes remains over 80 %489

recall up to a con�dence of around 70 %. But then dropping sharply after the 80 %490

con�dence threshold is crossed. What also becomes evident is that the recall for the491

�imperfect product� class remains pretty high even at con�dence thresholds beyond492
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80 %. On the other hand, the �good product� class lies below that. This could be493

explained simply by our dataset (see Figure 6), where we have less instances of the494

�good product� category.495

The precision curve, which can be seen in Figure 10b, shows the precision of the496

model at various con�dence thresholds. So, for example, if con�dence is at 0 %, the497

model will output every possible detection, even the ones with low certainty. Hence,498

as the con�dence increases, the precision is bound to increase as well. At 100 %499

con�dence, predictions are only made when the model is absolutely certain. However,500

it is important to note here that at that con�dence level, the model will probably just501

not return any predictions at all because it will never reach 100 % certainty for any502

of them. We can see in the graph that even for low con�dence scores close to 0, the503

model reaches precision scores of around 70 % for the �imperfect product� category504

and around 50 % for the �good product� category. Since the �good product� category505

is less represented in our dataset, it makes sense that we reach lower precision at a506

low con�dence threshold when compared to the �imperfect product� category. Hence,507

when running inference on images, it would be sensible to increase the con�dence508

threshold to �lter out potentially wrong predictions.509

To select an appropriate threshold, both the recall and the precision should be510

considered, and one option is the F1-score depicted in Figure 10c, which forms the511

harmonic mean between precision and recall and considers them equally. So, it512

balances the two main objectives of making correct detections while also �nding the513

most objects. The highest F1-score of 0.88 for both classes is achieved at a con�dence514

level of 0.356. The �imperfect products� category achieved higher F1-scores which515

remained rather constant over all con�dence levels, only dropping after crossing the516

80 % con�dence threshold. Compared to that, the curve for the �good product�517

category starts slowly decreasing after the 40 % con�dence threshold. Depending on518
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the application of a model, recall or precision might be more important. In those519

cases, the F1-score can be replaced by calculating an F� -score (see Equation 3) that520

�ts the desired balance.521

Lastly, the mAP50-95 is shown in Figure 10d over the trained epochs. Since the522

mAP is a single metric for all classes, only one curve is plotted. The curve increases523

sharply at the beginning and converges after approximately 10 epochs, reaching its524

peak mAP of 0.9359 at epoch 88, as listed in Table 6. This re�ects the model's525

overall ability to detect objects across a range of IoU thresholds.526

Figure 11 shows the confusion matrices obtained after validation, one depicting527

the absolute values and the other the normalized values. The absolute confusion528

matrix shows the raw counts of predictions for each class, while the normalized con-529

fusion matrix shows a percentage relative to the total number of samples in each530

actual class. The �Background� class is not a separate class but gets added automat-531

ically if, during the validation process, the model detects an object for which there532

is no bounding box or misses an object, essentially representing �false positives� or533

�false negatives". For the �good product� category, we have a total of 2,768 instances,534

2,092 were correctly predicted as such, which corresponds to 71 %. Then 667 of the535

same class were wrongly placed into the �imperfect product� class. Regarding the536

�imperfect product� class, the total amount of instances was 5,726, of which 5,425537

were correctly predicted, which corresponds to 95 %. As it was already visible from538

the other metrics, this class was the one most reliably predicted. Some misclassi�ca-539

tions occurred, namely, 547 objects were detected and placed in the �good product�540

class, and 531 were predicted as �imperfect product� even though these belonged to541

no category at all. For our use case, this error is not that detrimental since it ac-542

counts for 11.2 % of all predictions. Still, it would be desirable to reduce this issue.543

We already included 1 % background images containing no objects at all, as it is544
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recommended by Ultralytics (Ultralytics, 2023). However, this did not improve the545

issue. Another potential solution to reduce this problem could be the addition of546

more images. However, this is a very time-intensive endeavor. Another possibility is547

hyperparameter tuning, which has been shown to improve models without needing548

more data and labeling (Deepak and Bhat, 2025).549

[Figure 11 about here.]550

[Figure 12 about here.]551

We also ran inference (conf. threshold = 0.5) on a couple of images from the552

validation dataset to visualize detections, including some of our own augmented553

images (which were not used for the training of this model). This is depicted in554

Figure 12. The model works quite well on the �rst three images 12a - 12c. Here,555

the model detected every object, and the predictions also had high con�dence scores556

of approximately. 0.7-0.9. But on a gray image, it began to struggle, not detecting557

all instances and it completely failed on images where channel shu�e was applied.558

Those results show how important the training data is, and that if a model is not559

trained on a certain edge case, it can fail even if that edge case isn't that much560

di�erent than the normal images by human standards.561

562

3.5. Hyperparameter tuning with YOLO12x563

In this subsection, we present the results from conducting hyperparameter tun-564

ing using YOLO12x. The total runtime of the tuning was7 days, 15 hours, 31565

minutes, and 49 seconds. After completion of all tuning iterations a yaml �le566

with the best parameters is generated which was used to train the tuned model. In567
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Table 7, the hyperparameters that are used in the default model are compared to568

the ones used for the tuned model.569

[Table 7 about here.]570

In the following, we present the performance metrics of the tuned model, following571

a similar format to Section 3.4. The results are shown in Figure 13 and Figure 14.572

When compared to the default models, it is evident that tuning did not lead to any573

signi�cant improvement in performance. We also evaluated the �tness score, which574

in the Ultralytics implementation is calculated as a weighted sum of the mAP50 and575

the mAP50-95 as follows:576

�tness score= 0:1 � mAP 50 + 0:9 � mAP 50� 95 (6)

This analysis aimed to determine whether there was any gradual improvement over577

the course of hyperparameter tuning, or if the model performance had plateaued.578

As shown in Figure 15, aside from three outliers, the model consistently achieved579

very similar �tness scores across all hyperparameter combinations. From this, we580

conclude that additional tuning iterations are unlikely to yield improvements beyond581

the current model's capabilities. We hypothesize that further performance gains may582

only be achievable with a larger or more diverse dataset.583

[Figure 13 about here.]584

[Figure 14 about here.]585

[Figure 15 about here.]586

4. Threats to Validity587

In this section, the limitations of this work will be explained. For most machine588

learning tasks, the primary issues typically arise from the data used for training. In589
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this work, 2,040 images with multiple products were labeled and used for training and590

validation. This is not a huge amount of images, but since one person did it, labeling591

even more images would have been too time-consuming (especially since images for592

the other processing steps that were not part of this work had to be labeled as well).593

However, more images might have already solved the misclassi�cation issue that594

occurred in this work. The relatively small dataset size limits the model´ s ability595

to generalize to unseen cases, especially rare edge cases or shifts in the production596

environment. Furthermore, the dataset may lack su�cient diversity to re�ect all597

relevant real-world variations. Also, with 2,040 images, it is not unreasonable to598

assume that the model might not have seen all possible variations and edge cases599

that could occur in a longer running production. We did try to counteract this600

by collecting and using data from di�erent production days. Thus, we accounted601

for changes in the overall production setup, di�erent operators, and slight changes602

in the raw material, among other possible variations. Additionally, for one of the603

experiments, we applied data augmentation techniques and were able to increase the604

dataset to 3,714 pictures.605

Another issue is the consistency in labeling. Since one person did it, there might606

be a bias toward what is considered a �good product� and what is considered an607

�imperfect product�. Although two other people reviewed a sample of the labels608

and con�rmed their correctness, no quantitative assessment of inter-rater reliability609

was conducted. In future work, including formal inter-rater reliability metrics would610

enhance the credibility of the dataset. Clear labeling guidelines and multiple an-611

notators can reduce bias and enhance label quality, while semi-automated or active612

learning methods may lower manual e�ort and improve consistency. However, as we613

focused on binary classi�cation, potential bias is less critical. Another issue is that614

there might be slight environmental changes during production, which can in�uence615
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a model's �nal performance. The dataset contained images from di�erent production616

days, which might account for some variation. However, if, for example, the lighting617

changes signi�cantly or even the product itself changes, the models would probably618

reach their limits. The same is true if, for example, the camera position changes or619

even the cameras themselves are replaced by another type of camera. Despite e�orts620

to vary image conditions, this still poses a risk to result validity. A signi�cant con-621

straint is that we did not conduct systematic hyperparameter tuning on all models.622

We �ne-tuned YOLOv12x (the model that performed best overall), but the other623

models were assessed using their default settings. This has a natural e�ect on how624

fair the comparison is. The main reason for this decision was the amount of time and625

computational resources required for thorough tuning, which exceeded the scope of626

this work.627

5. Conclusions628

In this work, multiple object detectors were trained for the task of food quality629

analysis and distinguishing �good products� from �imperfect products�. First, the re-630

sults show that including augmentation in some way can be considered good practice631

since it reduces over�tting and increases the model's ability to generalize. For the632

binary detection task presented in this work, most of the recent models that can be633

considered state-of-the-art yield comparable results. The work also shows that �out634

of the box� detectors can achieve very good results without the need for any mod-635

i�cations to the models' architecture. So training and deployment of such models636

do not necessarily require years of expertise in the �eld of Computer Science any-637

more, unless everything should be built from scratch and tailored to the use case. So638

this work demonstrates that object detection tasks can be solved with relatively low639
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technical overhead, using open-source models and tools. This highlights a realistic640

path for industrial adoption without the need for deep model customization.641

Our hyperparameter tuning with YOLOv12x did not yield better results than642

the default model. So the most essential part is acquiring a diverse dataset with643

consistent labeling, the latter being the most time-consuming aspect of it all. In644

general, it can be said that the larger and more diverse the dataset is, the better the645

model will perform. The work also shows why it is necessary to look at other metrics646

as well, since the misclassi�cations issue that becomes evident in Figure 11 would647

not be visible if we only looked at metrics like mAP, precision, recall, or F1 score. A648

potential solution for the issue could be an increased dataset size, which would be649

very time-intensive.650

A key contribution of this study is the use of real-world data collected during651

live poultry production, o�ering a rare look at model performance under operational652

conditions rather than in a controlled lab environment. This adds practical relevance653

and re�ects challenges such as noise, motion blur, and product variation. To the654

best of our knowledge, this study presents the �rst applied comparison of YOLOv11,655

YOLOv12, and DFine models within the food quality inspection domain, providing656

a valuable foundation for future research in real-world food processing environments657

Furthermore, future work could include the training of models to not only discern658

between �good� and �imperfect products�, but also classify the imperfect product into659

more speci�c categories as it was also shown in Figure 4 (e.g., this product has a660

dark particle, this product has a hole, etc.). It would also be interesting to see661

how easily the results of this work can be transferred to the other processing steps,662

since, as shown in Figure 2 for this work, only the images of the forming step were663

used. Another promising direction for future work lies in leveraging the temporal664

nature of the image data. Since the camera is mounted on a moving production665
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belt, each product is typically captured multiple times from slightly di�erent per-666

spectives. This temporal redundancy could be exploited by aggregating predictions667

across consecutive frames, potentially increasing the robustness and accuracy of the668

quality assessment. Integrating the results into digital food twins might be ben-669

e�cial for tracing the status of the products throughout the production (Henrichs670

et al., 2022; Krupitzer et al., 2022). Further, we plan to correlate the state of the671

products, analyzed through computer vision, with state-of-the-art machine learning672

techniques (Jox et al., 2025) for root cause analysis.673
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Figure 1: Applied machine learning work�ow for the experiments.
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Figure 2: Process line of fried chicken products. The camera symbols (‚ ) show where images were
taken. The dashed box shows that the focus was foremost on the forming production step for this
work.
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Figure 3: Bounding boxes (red frame around poulty products) generated by GroundingDINO.
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(a) Lips (b) Fiberous Rim (c) Edge Cavity

(d) Center Cavity (e) Hole (f ) Dark particles

imperfect product good product

Figure 4: Depiction of a couple of product defects.(a) Lips, which are an unwanted change of the
shape,(b) �berous rims which are �bers extending from the product, (c) edge cavities which are
missing �lling at the side of the product, (d) center cavities are missing �lling in the middle of the
product, (e) holes which go through the entire product, and(f ) dark particles. On the right, a
good product can be seen.
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(a) Horizontal �ip (b) Brightness change

(c) Color to gray (d) Channel shu�e

Figure 5: This �gure displays four exemplary augmentations (based on originals, which are not
shown) that can be applied to increase the size of a dataset, based on Listing 3 in Einsiedel et al.
(2025). The �rst augmentation in Sub�gure 5a is a simple horizontal �ip, basically a mirror image
of the original. The augmentation in Sub�gure 5b changes the brightness/contrast of the original,
resulting in a lighter or darker image. Sub�gure 5c shows a simple conversion of the image to a
grayscale, while Sub�gure 5d depicts the random shu�ing of color channels.
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Figure 6: Structure of the dataset before and after augmentation. A total of 2040 �original� images
was built, containing a total of 43,137 products. Of those products, 14,026 belonged to the �good
product� class and 29,111 to the �imperfect product� class. Augmentation helped to almost double
those numbers.
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(a) mAP of YOLOv8x trained from scratch and using
pretrained weights

(b) Validation loss of YOLOv8x trained from scratch
and using pretrained weights

Figure 7: Comparison of YOLOv8x models trained from scratch (red) and �ne-tuned (orange) using
pretrained weights. Figure (a) shows the mAP across the training epochs, while Figure (b) shows
the validation loss.
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Figure 8: YOLOv8x models trained using the included augmentations (orange), custom augmen-
tations (blue), and no augmentations (green).
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Figure 9: Comparison of all trained models across a training period of 100 epochs. The model size
was set to the biggest available with pretrained weights.
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(a) Recall-Con�dence curve (b) Precision-Con�dence curve

(c) F 1 -score curve (d) mAP50-95 curve

Figure 10: This �gure displays the di�erent performance metrics for the �ne-tuned YOLO12x model
and the respective classes. In 10a the recall of the model is plotted against the con�dence, in 10b
the same was done with precision. In 10c, the F1-score is plotted. In 10d, the overall mAP50-95 is
plotted over the epochs.
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(a) Confusion matrix absolute values (b) Confusion matrix normalized

Figure 11: This �gure displays the confusion matrices obtained after validation. The left �gure
shows the confusion matrix with absolute values, while the right displays the normalized confusion
matrix.
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