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Abstract

Digitalization transforms many industries, especially manufacturing, with
new concepts such as Industry 4.0 and the Industrial Internet of Things.
However, information technology also has the potential to integrate and
connect the various steps in the supply chain. For the food industry, the
situation is ambivalent: It has a high level of automatization, but the po-
tential of digitalization is so far not used today. In this review, we discuss
current trends in information technology that have the potential to trans-
form the food industry into an integrated food system. We show how this
digital transformation can integrate various activities within the agri-food
chain and support the idea of integrated food systems. Based on a future-use
case, we derive the potential of digitalization to tackle future challenges in
the food industry and present a research agenda.
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Information
technology (IT):
encompasses the use of
computers, software,
networks, and other
technologies to store,
retrieve, and process
data

Enterprise resource
planning (ERP)
systems: support
monitoring and
controlling of business
processes

Industry 4.0:
combines Internet of
Things, cyber-physical
production systems,
and cloud computing
for digitized control
and optimization of
production

Internet of Things
(IoT): describes
connected physical
devices embedded with
sensors and software
that exchange data
over the Internet

Machine learning
(ML): enables
computers to learn
from data to optimize
their performance on a
given task

Edge computing:
moves data processing
and storage closer to
the network’s edge, i.e.,
near the data source

Cloud computing:
refers to delivering
computing services,
such as storage,
processing power, and
software, over the
Internet

1. INTRODUCTION

The food industry needs to undergo dramatic changes in the upcoming years. The COVID-19
pandemic and the war in Ukraine have shown the vulnerability of and the need for more resilience
in the food value chains (Alabi & Ngwenyama 2023). Additionally, the awareness of higher sus-
tainability as an answer to climate change influences the food industry, which primarily has to
contribute to the UN objectives SGD 2 (Zero Hunger), SGD 12 (Responsible Consumption and
Production), and SGD 13 (Climate Action). However, the industry is already highly automatized
and efficient. How can those efficient processes be improved and transferred toward sustainable,
flexible production?

One answer may be a systemic view of the entire food value chain, integrating all aspects from
farm to fork and back in an integrated food systems approach (Ericksen et al. 2012, Van Berkum
et al. 2018). This requires integrating not only the company level but especially the informa-
tion level. Implementing current trends in information technology (IT) can integrate the various
process steps and, hence, achieve such a systemic view. The manufacturing industry successfully
achieved this through the introduction of enterprise resource planning (ERP) systems in the late
1980s (Rashid et al. 2002), and, more recently, it has been achieved by Industry 4.0 or (indus-
trial) Internet of Things (IoT) technology (Malik et al. 2021). The food industry requires similar
developments that enable the transition from automatized production through using robotics in
isolated activities toward the integrated, flexible provision of food with the help of digitalization
(Rohleder & Minhoff 2019).

In this review, we present and recapitulate various current trends in IT that can help to trans-
form the food industry toward an integrated, digitized systematic approach in which the different
aspects of the agri-food chain are viewed as a combined cross-functional approach (Reardon &
Timmer 2012). In contrast to existing overviews (e.g., Lezoche et al. 2020, Morella et al. 2021,
Misra et al. 2022) that often focus on one or several aspects of the agri-food chain in isolation,
we focus on how IT can integrate the chains’ stages toward an integrated food system. Our con-
tributions are threefold. First, we explain the relevant trends and technologies in the IT domain
(Section 2) and explain how those trends are already established for connecting different func-
tions of the food value chain (Section 3). Second, we present an emerging use case that shows
the potential of IT to connect the stakeholders of the agri-food supply chain systematically but is
also envisioned to facilitate the transformation to plant-based food alternatives (Section 4). Third,
based on the described future use case, we derive the open challenges for applying IT to foster the
transformation toward an integrative food system (Section 5). Finally, Section 6 summarizes the
article.

2. CURRENT ADVANCES IN INFORMATION TECHNOLOGY

In recent years, new developments in IT have found their path into processes in the industry
and provide features that were not imaginable a decade ago: Machine learning (ML) supports
the analysis of millions of data points in seconds. The data are collected by sensors connected
through IoT technology and edge computing. The data can be processed with the help of cloud
computing. Those technologies can also be applied to the food processing context. This sec-
tion presents several information technologies that will drastically change food production in the
current decade.

2.1. Artificial Intelligence, Machine Learning, and Deep Learning

Artificial intelligence (AI) is likely the most prominent digital technology of the past decade. It is
broadly deemed a disruptive technology pervading every branch of industry, economy, academia,
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Artificial intelligence
(AI): computer
systems that can
perform human-like
tasks such as learning,
reasoning, or
problem-solving,
which are commonly
deemed to require
intelligence

Digital twin: a virtual
model of a product,
machine, or process
that enables
simulations, real-time
analyses, or predictions

Deep learning (DL):
forms hierarchies of
representations of the
data using machine
learning based on deep
neural networks

the public sector, and society. The latest breakthroughs in applying AI technology range from
beating world champions in the most complex board and computer games (Silver et al. 2017,
Vinyals et al. 2019) to contributing to solving intricate bioinformatics problems such as protein
folding prediction ( Jumper et al. 2021) and generating human-like and authentic appearing con-
tent such as images (Rombach et al. 2022), artworks (Cetinic & She 2022), and entire texts (Van
Dis et al. 2023).

The European Commission defines AI systems as referring to “software (and possibly also
hardware) systems designed by humans that, given a complex goal, act in the physical or digital
dimension by perceiving their environment through data acquisition, interpreting the collected
structured or unstructured data, reasoning on the knowledge, or processing the information, de-
rived from this data and deciding the best action(s) to take to achieve the given goal” (Eur. Comm.
2019). It is further described as a scientific discipline with several approaches and techniques. One
of those approaches is the challenge of enabling machines (or computer systems) to learn—better
known by the term ML.

Following a prominent definition from Mitchell (1997, p. 2), a “machine or program is said to
learn, if it improves its performance, measured by a performance measure P, on a class of tasks T,
with increasing experience E.” This means that in contrast to the conventional programming of
computers, using ML, a computer can find a solution to a given problem by itself when provided
with enough data or trials.Ways to collect data are manifold. However, recent advances in sensor
and IoT technology, combined with modern digital twin concepts from Industry 4.0, are essential
to leveraging AI’s potential in adding value to the vast amounts of (big) data we can collect these
days (see Sections 2.3 and 2.5).

A particularly prominent field ofML is known as deep learning (DL) (LeCun et al. 2015).What
makes DL specifically effective is the insight that a cascade of various numbers of deeper layers
can form hierarchies of representations of the data input, which is advantageous when learning
complex patterns from high-dimensional data. This leads to the core capability of DL techniques
to construct high-level features from low-level ones in a self-learning fashion (also referred to as
representation learning), given that enough data exist to train such DL models.

Today, most DL models are based on artificial neural networks (Rumelhart et al. 1994). Artifi-
cial neurons have been researched since the early 1950s by Rosenblatt (1958), and when stacked
and layered together, as inspired by the brain, these neurons form connected networks that can
represent and model (in theory, any) nonlinear relationships (Hornik et al. 1989) by adjusting
the connection strengths (also called weights or parameters in the literature). One of the areas
most influenced by DL is computer vision. Although artificial neural networks for vision tasks
have been actively researched since the 1970s (e.g., Fukushima 1980, LeCun et al. 1989), starting
with the introduction of deep convolutional neural networks such as AlexNet in 2012 (Krizhevsky
et al. 2012), a new impetus occurred in the computer vision community. Pattern recognition and
prediction based on image data captured by camera sensors constitute an often-preferred way of
process monitoring due to their nondestructive means of capturing system states. That led to DL-
based computer vision being one of the main forces in bringing AI technology to many industry
branches, also comprising agricultural production and food manufacturing (see Section 3).

2.2. The Hunger for (Big) Data

However, increased recognition capabilities and predictive model capacities facilitated by DL
come at a cost, with data being the currency. Collecting vast amounts of data using monitor-
ing systems and sensor technology is not an issue at first glance. However, in most cases, analysts
are interested in predicting specific target values from observed sensory data. To train DL models
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Big data: refers to
applying advanced
information processing
technologies and data
analytics to extract
valuable insights and
patterns from high
volumes of potentially
unstructured data

Cyber-physical
systems:
interconnected
physical and software
components, both
intertwined by an
intelligence for control
of the physical
components

to predict specific categories (classification) or continuous values (regression), a sufficiently large
amount of training data must be collected and annotated by a domain expert. The needed anno-
tations represent the ground truth, which is often not straightforward to measure automatically
without human expertise. Therefore, efficient training and getting the most out of scarce data sets
or large unlabeled data pools are highly active topics in DL research.

Furthermore, despite being in the digital big data (De Mauro et al. 2015) era, big data alone is
not sufficient. In most business cases, ML models, including DL, need structured data. Of course,
ML models exist that extract information from unstructured data such as texts or websites. How-
ever, the need for idealized (typically, tabular) data representations becomes the standard case
when brought to commercial use and production. Paired with the need for ground-truth anno-
tations, data collections appearing vast and big can quickly become small in ML terms (Kitchin
& Lauriault 2015). The excessive hunger of modern data-driven AI models for vast and idealized
data constitutes one of the most challenging issues because it strongly influences the achievable
quality of data-driven models as obtained by ML and DL.

2.3. Internet of Things, Cyber-Physical Systems, and Sensor Technology

IoT technology combines two streams of IT: miniaturization and connectivity. Computational
devices have become smaller and smaller; consequently, it is now possible to equip everyday de-
vices with computers to make them smart (Ashton 2009). IoT devices are connected, i.e., they
can exchange information and act upon that. IoT devices can collect information about their
environment using sensors and react to new environmental conditions.

Cyber-physical systems consist of tightly integrated physical and cyber components intercon-
nected through one or more networks (Baheti & Gill 2011). The cyber components comprise
computing and communication facilities for monitoring, automating, and controlling physical
systems and processes (Lesch et al. 2023). In the production context, cyber-physical production
systems describe a dual system in which physical operations are modeled in a virtual representa-
tion of the real world ( Jeschke et al. 2017).Those enable decentralized decision-making, real-time
communication, and collaboration among various entities, including humans, over the Internet
and IoT components.

Sensors can be connected to IT systems [e.g., e-nose systems (Tan & Xu 2020)], or integrated
into the production line for process monitoring/control. They can also be integrated into food
packaging. There exists a variety of sensors that might be relevant in the food domain, such as
gas sensors or biosensors, that allow conclusions about perishability. CO2 concentration can be
measured using nondispersive infrared sensors or chemical sensors; infrared sensors and electro-
chemical, ultrasonic, and laser technologies are used to detect the oxygen concentration. Another
type of sensor is a biosensor based on receivers made of biological materials such as enzymes, anti-
gens, hormones, and nucleic acids. Müller & Schmid (2019) describe the recent state-of-the-art
in sensors for packaging.

2.4. Cloud Computing, Edge Computing, and Fog Computing

Technological innovations like cloud, edge, and fog computing have reshaped how we process,
store, and access data. Cloud computing refers to delivering computing services, such as stor-
age, processing power, and software, over the Internet (Qian et al. 2009). It offers scalability,
cost-effectiveness, and accessibility from anywhere with an Internet connection. Edge computing
moves data processing and storage closer to the network’s edge, near the data source. This reduces
latency,minimizes bandwidth usage, and allows real-time data analysis, benefiting applications like
IoT and autonomous vehicles (Cao et al. 2020). Fog computing combines aspects of both cloud
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Blockchains: act as
decentralized data
storage for sharing
data between the
participants

and edge computing, extending cloud services to the edge of the network (Chen et al. 2017). It
leverages local edge devices to process and analyze data while relying on centralized cloud re-
sources. The three concepts are interrelated, with edge and fog computing complementing cloud
computing to optimize performance, data management, and overall efficiency in a decentralized
computing environment (Escamilla-Ambrosio et al. 2018).

2.5. Industry 4.0, Industrial Internet of Things, and Digital Twinning

Industry 4.0 combines cyber-physical production systems, IoT, and cloud computing (Kagermann
et al. 2011).Although the term Industry 4.0 is primarily used in Europe, the overlapping concept of
industrial IoT, mainly used in the United States, describes advances in big data, cloud computing,
and networking of machinery in the industrial sector ( Jeschke et al. 2017). Industry 4.0 does not
focus on a single process or technology but integrates all processes, resulting in the smart factory:
an integrated production process that is highly flexible due to self-organized, connected machines
and intelligent software (Wang et al. 2016).

A key element of Industry 4.0 is the digital twin: a virtual model of a product, machine, or
process that comprises its selected characteristics, properties, conditions, and behaviors utilizing
models and information created with data collected by sensors that enable simulations, real-time
analyses, or predictions (Verboven et al. 2020). A digital twin system facilitates the generation of
various digital twins, which can model different aspects or perspectives.

2.6. Blockchain Technology

Blockchains, known from cryptocurrencies such as Bitcoin, act as decentralized data storage where
the data are shared between the participants (Kamilaris et al. 2019). Because changes are logged
and validated with hash functions, blockchains are nearly not manipulable.Hence, blockchains are
a promising approach to enhance traceability in food supply chains and could assist in determining
and sharing the food quality to improve the processes and reduce food waste. The possibility
of combining a blockchain-based verifier with the digital twin application is worth mentioning
to validate and secure the data (Bottani et al. 2020). One often-named issue for blockchains is
the postulated energy demand of blockchains. However, this mainly relates to the application of
blockchains in cryptocurrencies, where participants have to solve computationally intensive tasks
to gain more cryptocurrency shares. Information storage does not require more energy than other
distributed, redundant systems.

3. INFORMATION TECHNOLOGY FUNCTIONS AND APPLICATION
IN THE FOOD SYSTEM

This section focuses on several essential functions across the food supply chain, starting with
agricultural food production. We target functions in which we see a remarkable potential for in-
tegrating IT and new digital technologies in relation to the current state of industrial production
in the Industry 4.0 context.

3.1. Smart Agricultural Production

IT entered the agricultural production sector quite some time ago.With the management concept
of precision agriculture having developed since the 1990s, the utilization of IT in agriculture has
become a de facto standard. Today, terms such as smart farming, digital farming, and farming 4.0
are omnipresent but often not sharply distinguished (Balafoutis et al. 2017, Herlitzius et al. 2022).
This might be because all concepts share essentially the same goals precision farming has been
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pursuing ever since: making the most efficient use of input resources (e.g., fertilizers, herbicides,
or water for irrigation), i.e., applying them only in the required amount at the right time in the
right place over the cropping season through exploiting field-specific data and information that
enables site-specific treatments and improved planning. This ensures safeguarding agricultural
productivity under the challenging conditions and adaptation requirements imposed by climate
change and progressing environmental degradation.The things that have changed, however, since
the inception of this concept are the available technological advances that have emerged. For
instance, intelligent sensors that allow for real-time and in situ field condition measurement are
used for recommendation or semiautomated adaptation of machine configurations. This led to
established concepts such as variable rate application and section control (Clark & McGuckin
1996; Shockley et al. 2011, 2012).

The idea and goals behind precision, smart, and digital farming are driven by the insight that
field conditions vary in space and time and, thus, exhibit heterogeneity. The same holds for the
managed objects (crops or animals); i.e., their conditions and demands change dynamically over
time due to the highly complex biophysical interactions with their environment. Accordingly,
the agricultural domain can partly be considered unpredictable and thus complicated to model
and control. For the same reason, Bechar & Vigneault (2016) deem agriculture one of the most
challenging domains for intelligent machines or robots.

Therefore, smart agricultural production goals can only be reached when IT and digital tools
are leveraged. Spatially exact positioning can be accomplished today up to a precision of a few
centimeters in the fields using Real-Time Kinematic (RTK) positioning technology. This al-
lows tractors and robots to autonomously navigate and drive through the fields without human
intervention.

Farm management and information systems (FMIS) (Bökle et al. 2022, Fountas et al. 2015)
are software systems that allow for storing and processing agricultural data, documentation of
agricultural processes for cross-compliance, tracking of resource or farm machinery utilization,
or planning through creating application maps for, e.g., fertilization or plant protection measures.
FMIS are related and usually make use of geographic information systems to visualize farmers’
fields and overlay these top-down visualizations with application map or soil map layers to allow
for planning site-specific treatments (Herlitzius et al. 2022).

Since the advent of new digital technologies such as AI, IoT, and cloud computing, new tech-
nological concepts have become possible and have entered the agricultural sector (Misra et al.
2022, Osinga et al. 2022, Paraforos & Griepentrog 2021). The potential of digital farming in
agriculture is well-elaborated in the literature (see, e.g., Baerdemaeker 2023, Chaterji et al. 2021,
Elbehri & Chestnov 2021, Liakos et al. 2018). In the following, we therefore provide only a brief
overview of innovative AI-facilitated applications contributing to sustainable, secure, and highly
precise agricultural food production (without any claim for being exhaustive).

Weed detection and precise weed control by means of spot spraying (Allmendinger et al. 2022,
Gerhards et al. 2022) or mechanical removal (e.g., Reiser et al. 2019) can be performed by intelli-
gent devices such as smart sprayers or robots (Bechar & Vigneault 2016, Paraforos &Griepentrog
2021).

Apart from weeding and hoeing, agricultural robots in the fields also exist to take over tasks
such as seeding (e.g., Blender et al. 2016) or harvesting (e.g., Arad et al. 2020, Zhou et al. 2022)
and have done so already with high degrees of autonomy. Furthermore, specialized robots are
being developed for conducting highly autonomous plant phenotyping (Mueller-Sim et al. 2017)
or vegetation monitoring (Ahmadi et al. 2022; Lüling et al. 2022, 2023) on the fields or in indoor
farming applications (see, e.g., Smitt et al. 2021). Spatiotemporally high-resolution monitoring
and high-throughput phenotyping of crops are of high importance for plant breeders who create
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resistant variants of crops and farmers to allow for site-specific or plant-individual treatments and
thus safeguard the yields.

Remote sensing applications utilizing AI to analyze and support the annotation of images taken
by unmanned aerial vehicles are envisioned to detect plant stresses such as pathogen infestations
(e.g., Chin et al. 2023), or are proposed to map weed occurrence (e.g., Sa et al. 2018 and Boysen
& Stein 2022), for early crop growing stages.

An essential tool for counteracting food security issues is AI-supported yield prediction (Heil
et al. 2023, Srivastava et al. 2022). With ever-more-accurate predictive models based on pub-
licly available satellite and weather data, agencies could, for instance, predict in what regions
yield shortcomings are to be expected and can invest early in measures such as importing food
to threatened areas.

Next to crop production, new digital tools and sensing systems have demonstrated high po-
tential in digital livestock farming: Farmers today can significantly benefit from animal health
monitoring (Bao & Xie 2022, Zimpel et al. 2021) using posture detection (Riekert et al. 2020) and
behavior analysis (Arablouei et al. 2023, Lardy et al. 2022) or monitoring of milking performance
and prediction (e.g., Seymour et al. 2022).

Smart primary food production using digital tools is integral to a future Food Industry 4.0.
Smart sensors on the fields and in animal housing deliver valuable data feeding into digital models
and digital twins (Pylianidis et al. 2021,Verdouw et al. 2021; see also Section 3.3).We return to this
use case in Section 4. This allows, in the subsequent step, information extraction and knowledge
creation over the entire primary food production process,which in turn facilitates food traceability
(see Section 3.5) and delivers further valuable information to succeeding food manufacturing,
delivery, and sales steps, i.e., from farm to fork.

3.2. Intelligent Food Processing

Several applications in food production are only feasible with AI. Especially in the field of image
processing, it leads to ever-new solutions. Classic pick-and-place applications, for instance, rely on
intelligent vision systems that provide robots with gripping positions, as well as the determination
of size, geometry, contour, shape, and density of products, enabling accurate packaging or pro-
cessing (Lobbezoo et al. 2021). The trend toward automation with optical methods is pervasive in
Industry 4.0, not only in production lines but also increasingly in quality control (Lin et al. 2023).
Currently, DL algorithms have become state-of-the-art for picture detection (Zhu et al. 2021).

With the integration of AI, companies also equip their inspection devices to enhance food
safety (Qian et al. 2023) and reduce waste (Harvey et al. 2020). By using AI, the metal detectors
of these providers can nearly eliminate product effects in foods with high inherent conductiv-
ity, preventing false alarms. This scenario is common in protein products like meat and cheese,
metalized packaging, or high salt and moisture content products. Regarding technological inno-
vations, foreign body inspection is no longer conducted sporadically after food production but is
performed directly during the process. If an error is detected, the systems can ideally compensate
automatically without the operator’s intervention.

AI demonstrates its strengths wherever early detection of quality deviations is necessary. The
Future Lab 2030 (Zeh &Türkmen 2023) project team envisions that, through modern data analy-
sis methods, quality characteristics currently measured as samples in laboratories will be captured
and evaluated in real time during the production process. In addition to innovative measuring
methods, i.e., new types of inline sensors [e.g., based on mass spectrometry (Diez-Simon et al.
2019), hyperspectral detection (Zhu et al. 2020), or gas chromatography (Wang et al. 2020)], AI
and ML play a central role in this endeavor. The aim is to capture data on food products’ most
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crucial chemical, physical, and biological processes. All data describing the condition of a food
product are collected and mapped with additional data using a digital twin (Koulouris et al. 2021).
However, the industry is still cautious in adopting novel and often expensive sensor technology.
Furthermore, approaches for digital food twins still need to be developed (Henrichs et al. 2022,
Krupitzer et al. 2022).

The cleaning process is a critical aspect of food processing that offers the potential for opti-
mizing time constraints and resource consumption. Cleaning in place (CIP) approaches are often
applied; however, those approaches follow fixed, standardized cleaning processes. Hesse (2017)
showed how an intelligent, self-learning cleaning systemwith optical inline contamination sensing
could save water and energy consumption. Such approaches rely on innovative sensor technology
and AI to interpret the sensor information in real time and optimize the cleaning process.

3.3. Process Monitoring through Enterprise Resource Planning Systems
and Digital Twins

Since the 1980s, the manufacturing area has used ERP systems to monitor and control production
(Rashid et al. 2002). ERP systems support business processes through specific cross-divisional IT
functions. Those systems helped to integrate different business functions across several divisions
in companies. Usually, ERP systems are composed of standard modules (e.g., for HR functions)
and more specific modules, e.g., for control of manufacturing processes.

The food industry often has different systems that store data from production, laboratory anal-
ysis, and product development. Rather than relying on the standard solutions of companies such
as SAP or Oracle for the food industry, different customized ERP solutions are available, such as
InnoSEP, PDG foodSolution, or JUSTFOOD. In the future, those systems might have the same
effects as the ERP systems in the manufacturing industries and can connect the different stake-
holders like farmers, distributors, and producers through common systems (Setiabudi et al. 2021,
Zadeh et al. 2018). The data stored in the ERP system can also be made available to different
stakeholders from individualized perspectives such as dashboards or apps.

Digital twins can support the monitoring and analysis of manufacturing processes (Grieves
2014). The idea is to use the collected data from sensors and the data in manufacturing execution
systems (a module of ERP systems) to build a digital model of the product and analyze the in-
fluences of the process on the product. However, this is more complicated for the food industry
than other industries. The reason for that lies in the product properties: Whereas most products
in manufacturing only change their characteristics through process steps, food changes its charac-
teristics independent from the process through biological, physical, or chemical processes within
the food product (Krupitzer et al. 2022). Digital food twins have to incorporate models for those
changes. Currently, research has started to take this into account (Henrichs et al. 2022). So far,
industry solutions that provide an out-of-the-box solution for digital food twins have yet to exist.

3.4. Predictive Supply Chain Management

IoT, especially the application of sensors, can improve the monitoring within the (food) supply
chain (Sawik 2013). Consequently, supply chain management can be optimized when integrating
a management system such as an ERP system. However, the computation capacity for real-time
analysis is often unavailable, especially during transportation. Often, IoT systems are combined
with computational resources in the cloud, requiring a stable network connection, which is not
guaranteed. Hence, real-time analysis in the cloud might not be feasible.

Real-time analysis has vast potential. For example, it could be used to analyze when a truck
drives a bumpy street if there is the potential for damages to the food items due to the movement
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of the items. Combined with ML, it can also support forecasting food conditions, e.g., proactively
determiningwhether the cold chain could be violated.Alternatively, if the temperature stays stable,
it might be possible to adjust the cooling system in the truck to save energy. All those use cases
require computational power. There has been a shift of this computational power from the cloud
toward the data, hence, using small computational devices close to the location where the data are
collected. This is subsumed under the term edge computing. Recent research tries to understand
the potential and limitations of this approach (Khan et al. 2019).

Such data analysis approaches also support the long-time analysis of the (food) supply chain.
This is important to support various adjustments, which might improve the resilience of the food
supply. Furthermore, real-time analysis for immediate reactions to critical events can improve the
system’s resilience. We highlight the potential of real-time predictive data analytics in Section 4.

3.5. Food Traceability through Blockchains

Sensors can be used to collect different data about food in real time (Zaukuu et al. 2020). These
data are stored in databases, which single actors maintain, often the stakeholder with the highest
market power. Accordingly, only some actors in the food supply chain have access to the data. This
significantly influences the verification of the products’ and ingredients’ origin.

Blockchains have two crucial characteristics that support their application for tracing items
in the food supply chain (Li et al. 2023). First, blockchains are a distributed data structure. Each
participant of a blockchain has access to data. Second, data in a blockchain can only be changed
with agreement between all parties. Hence, it is immutable, and data manipulation is not possible.
Accordingly, blockchains seem to be the ideal structure for supply chain management (Cole et al.
2019) and transparent data storage in the distributed food supply. Accordingly, the blockchain
might link all stakeholders and provide companies, but also customers, with an interface for
transparent information about the food origin.

However, several open issues reduce their applicability. Blockchains might fit if the food supply
chain is a simple chain. In reality, we have several parallel chains (Kramer et al. 2021). For example,
when producing a cake, we have several ingredients; all of them would have their blockchain for
traceability. After production, the blockchain for describing the cake has to combine all the data. In
the end, the blockchain is extended to a network of blockchains. This comes with many technical
issues that need to be solved in reality. Kamath (2018) describes the application of the IBM Food
Trust blockchain solution in different use cases.

4. FUTURE APPLICATION SCENARIO: DIGITALIZING THE MILK
PRODUCT CHAIN

In this section, we want to highlight the potential of IT for generating an integrated food system.
We focus here on milk products as an example, as those are one of the product categories that have
been heavily changing in recent years and will further change in the coming years. Various societal
and environmental changes affect the industry. The calls for animal welfare and the reduction of
greenhouse gas emissions result in the need for new plant-based product alternatives (Moss et al.
2022) as well as new types of packaging that potentially influence the durability of the products
(Meherishi et al. 2019). Increased awareness of consumers regarding the origin of their food leads
to the demand for better traceability and the presentation of the product stories regarding the ori-
gin of the products (Petrescu et al. 2020). Furthermore, the demand for renewable energy sources,
the energy crisis in Europe, and the need to reduce the entire food system’s CO2 footprint also
require the identification of process optimizations. We deem utilizing new digital technologies
key to reaching and supporting the transformation toward an integrated food system. Figure 1
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Figure 1

The vision of the digitalized agri-food chain. This system model integrates the different process activities for farming, transportation,
and processing (based on the example of dairy products) through the use of information systems and artificial intelligence.

shows an overview of our vision for such an integrated food system approach using the example
of the dairy industry. We elaborate on the envisioned potential in the following.

4.1. Real-Time Process Monitoring and Analysis through Edge Computing

Edge computing is a decentralized computing paradigm that processes data closer to their orig-
inating source, reducing latency and bandwidth utilization while enabling real-time data analysis
and response. In contrast to cloud computing, in which the data must be transferred to the cloud
servers first, edge computing supports a faster real-time analysis, given that the respective tasks
are computationally feasible. Therefore, cloud computing might complement edge computing,
especially in ML. The computation-intensive part of data-driven ML applications, i.e., training
the corresponding ML modules, might run on the cloud servers, where computational resources
are available, and (historical) data from various data sources can be combined and centrally
stored. The trained models can be deployed and executed on edge devices like smartphones, IoT
devices, and edge servers. This is referred to as Edge ML (Murshed et al. 2021). Those edge
devices are often lightweight in their computational capacity for energy-saving reasons. Still, the
execution or inference steps of the ML models are often feasible in real time with low energy
demand.

Edge ML brings several advantages, including reduced latency, improved privacy and security
(also data sovereignty), and the ability to make real-time decisions without relying on a constant
Internet connection. It is especially beneficial when Internet connectivity is limited and real-time,
low-latency processing is required. In situ data preprocessing and analysis at the source (on-the-
edge) help to identify, monitor, and predict relevant process parameters in real time. Hence, with
the help of edge computing, it is feasible to monitor the processes continuously, e.g., in the stall,
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during transportation, or in milk processing. This generates a holistic, integrated view of the
process activities.

Furthermore, explanations for predictive analyses can be tailored to different stakeholders to,
for instance, omit confidential data. Algorithms can also provide recommendations for proactive
adjustments of process parameters to avoid critical situations, such as early spoilage detection
or fouling to prevent intermediate cleanings. This approach fosters a deeper understanding of
production processes and potential influences on product quality, allowing for better assessment
of downstream impacts and process optimizations along the agri-food chain.

4.2. Connecting the Chain Elements through Artificial Intelligence

A systematic approach toward integrated food systems requires the interconnection of the differ-
ent actors in the food supply chain, which implies interoperability among the different IT systems
(Verdouw et al. 2016). For the milk industry, this mainly concerns the farmers, dairies, and retail-
ers. Also, the customers might be integrated. The German dairy Schwarzwaldmilch provides one
excellent example related to food, showing the data’s power. After scanning a QR code on the milk
package, customers can see from which farms their milk was collected (YoY 2021).

Even though the milk industry is highly standardized, milk as an essential ingredient might
be difficult because its exact composition is highly dependent on several factors, especially the
feeding and treatment of cows. By employing state-of-the-art in situ sensor technology and con-
tinuousmonitoring of critical process indicators, generating a vast amount of data and information
is possible. Examples would be camera-based tracking of the eating behavior of dairy cattle fused
with information on feed composition or the automatic measurement of milking performance
and parameters by milking robots. In subsequent steps, intelligent digital methods are then de-
ployed to create value, e.g., applying real-time data analytics using Edge ML and informing
farmers and operators in later processing steps. Furthermore, the data can be interpreted usingML
orDLmethods to detect relevant process indicators or anomalies.However, those analyses require
a view from farm to fork and back: Leveraging interconnected digital technologies, including IoT,
digital twins, and edge computing, coupled with distributed and explainable artificial intelligence
(XAI) methodologies can pave the way for a pervasive, automated, and self-organizing agri-food
value chain, encompassing consumers and providing feedback to primary producers, processors,
and distributors. Applying the systemic process knowledge acquired through AI and data analysis
will help plan and realize adjustments to relevant process steps.

One challenge with modern ML, especially DL models, is their inherent complexity and
opaqueness. As these models become larger and more complex to improve their performance,
they become black boxes, meaning that one cannot extract the inner reasoning of the ML model
from input to predicted output. The term explainability in this context refers to the ability to
understand and interpret how a model arrives at its predictions or decisions, which is with what
the research stream of XAI is concerned (Gunning et al. 2019). We highlight the challenges in
Section 5.5. XAI-based knowledge extraction with simulations (using digital twins) can support
automated adaptive process control. In the next step, highly interconnected and interoperable
software systems combined with automated adaptive process control would facilitate holistic mu-
tual optimizations on the system level rather than the individual chain-element level. For instance,
between dairy farmers and milk producers, an intelligent process control system could optimize
logistics operations for raw milk delivery (as indicated in the middle box in Figure 1). However,
this does not mean that humans should be entirely out of the loop; implementing the AI algo-
rithms in intelligent decision support systems with humans making the final decision to adjust
process parameters based on a profound analysis of the available data is feasible.
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4.3. Digital Food Twins for Product Development and Process Optimization

In the dairy industry, milk composition varies throughout the year. Using profound data analyt-
ics and XAI, it is possible to investigate whether these variances are identifiable in the collected
data from the cattle sheds and whether they can be attributed to, e.g., feed composition, animal
health and behavior, or other parameters. We deem digital twins a promising way to model the
dependencies of the milk composition from primary production on the receipt formulation in
later processing or on other process parameters.

Furthermore, protein sources aremoving from animal to plant origin, driven by concerns about
animal welfare and the environmental effects of raw material production (Moss et al. 2022). Digi-
tal twins that model and simulate process steps and product characteristics can support this and be
the basis for ML-supported reformulation of vegan dairy products. Additionally, we see promis-
ing potential in using the digital twin’s information to more accurately determine a new product’s
potential shelf-life based on the observations of similar products and the adjustments of a corre-
sponding existing digital twin for the new product.Also, on even lower levels, the digital twin could
model the chemo-physical and microbiological properties of the food (Krupitzer et al. 2022) to
simulate the food’s perishability.This can contribute to more accurate shelf-life predictions, which
are especially important for milk products. Furthermore, it is also feasible to integrate a digital
twin of the packaging and, by combining this with the digital twin of the food, to determine the
interactions between the packaging and the perishability of the food.

5. RESEARCH AGENDA

In the previous sections, we described the implementation of IT in different functions of the food
supply chain and stressed the current and potential future benefits of IT for an integrated approach
to monitor and control future food systems from farm to fork.We corroborated this by employing
a critical use case, i.e., the digitalization of milk production. In this section, we derive a research
agenda of how the goal for an integrated food system leveraging new digital technologies, such as
AI, IoT, edge, and cloud computing, can be reached.We summarize requirements for companies
and scientists as well as for the education of skilled personnel.

5.1. Understanding Supply Chains as Supply Matrices and Networks

The food supply is often represented as a straightforward supply chain; however, this only partially
reflects reality. Take the example of an apple cake: One producer requires several ingredients,
such as eggs, flour, apple, milk, etc. Those come from many different producers, each with several
other customers.Wemight also have a mixture of those business activities, e.g., the apple producer
might sell some apples to other producers, some to markets, or even some directly to consumers.
Furthermore, the consideration and optimization of sidestreams and the end-of-life (of product
and packaging) are significant for sustainable food provision. Not only the end-of-life but also
lower quality class rated apples (or other raw products) can be sidestreamed directly to upcyclers
who themselves trade the upcycled products further along the network. Particular interest can
arise if the sidestreams of the products, e.g., from plant-based milk alternatives, might be suitable
for producing the packaging materials. Hence, the former simple supply chains are converted into
complex supply matrices and networks.

The application of new digital technologies can support dealing with the complexity of these
supply structures and further their transition (Yadav et al. 2022). A critical issue in terms of digital-
ization constitutes the sovereignty of the data involved. At present, data are often stored centrally
with the disadvantage that only a few actors have access to most of it, or it is kept locally, mean-
ing many or all actors only have access to data shares. However, both approaches prevent an
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end-to-end view of the processes, which is crucial for systemic analysis and integrated optimiza-
tion. Blockchain (see Section 2) seems promising for distributed management and secured data
utilization.All actors in the agri-food chain could gain access to the necessary data and can act upon
this. This would render end-to-end process analysis through ML and chain- or network-wide
optimization possible.

However, this entails technical requirements such as standardized interfaces, interoperability,
compatibility, and communication between various information systems. Although other indus-
tries already have such standardized processes implemented in ERP systems, the food industry
still needs to include such a level of standardization. Future research activities in this regard are
required, mainly by the different stakeholders and IT industry, to develop systems adjusted to the
requirements of the food industry. Actors that in the future are supposed to conduct such soft-
ware projects must be educated accordingly and understand the complexity of future digital food
systems through developing a systemic understanding of the agri-food network.

5.2. Supporting the Transition to a Circular Economy

In the previous paragraph, we discussed the transition of the food supply chain toward a food
supply network. This network is not a forward network; the consideration of sidestreams and
end-of-life of products and packaging requires the transformation to a circular economy (Esposito
et al. 2020).

Sidestream analysis becomes more and more critical. On the one hand, traceability is an es-
sential aspect in this regard (Kumperščak et al. 2019) to improve the reuse of residues. On the
other hand, energy management in production facilities gained more attention recently. Espe-
cially in food production, extreme differences in temperature for different production steps exist,
e.g., producing bread rolls in which the temperature between baking processes and refrigeration
differs by almost 250°C. Such potential can be used within heat exchange networks, where digital
twins andML-based data analytics might help optimize the organization of heat management and
sidestreams (Chen et al. 2023, Yu et al. 2022).

Digitalization can also support the transformation from linear supply chains to a circular econ-
omy, as the digitization of information supports the (sensor-based) collection and analysis of data
for optimizing sidestreams and the end-of-life of products (Chung et al. 2022). Hence, this sup-
ports creating a feedback loop, i.e., a circular loop. Future research must also elaborate on the
application of digitalization to support the transition toward a circular economy and also extend
the perspective toward the bio-based industry beyond food products, especially regarding the topic
of sustainable packaging, e.g., replacing fossil-based plastics with biogenous materials from plant
residues (Stökle & Kruse 2019). Significantly, sustainable packaging raises further questions, as
the new types of materials and packaging influence the durability of the products. Despite its
infancy, first approaches already exist that model the packaging and ripening processes in digi-
tal twins (Shrivastava et al. 2023). All those aspects concern various scientific disciplines. Hence,
interdisciplinary project teams in industry and interdisciplinary education of students are required.

5.3. Enabling Decentralization and Scale-Down by Distributed
Artificial Intelligence

The different crises in recent years, mainly the COVID-19 pandemic and also war in Europe,
showed the vulnerability of the global food supply chain. Accordingly, companies strive for de-
centralization of their food supply chains (Alabi & Ngwenyama 2023) to achieve a resilient food
supply. Additionally, the demand of customers for local food also shows the growing importance of
decentralized food production. Furthermore, there is a trend toward individualized food (i.e., lot
size of 1); hence, scale-down activities are becoming more important (Rohleder &Minhoff 2019).
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Adaptive systems are software and hardware systems that are able to adjust their behavior at
runtime to adapt to changes in their environments (Krupitzer et al. 2015). Such systems can opti-
mize the digitalized processes of food production but also increase flexibility and allow for faster
reactions to changes.

Another approach to support decentralization can be multi-agent systems (van der Hoek
& Wooldridge 2008). Multi-agent systems are computerized systems in which multiple (au-
tonomous) entities (called agents) interact with their environment and communicate with other
agents to achieve common goals or solve complex problems in a distributed fashion. These agents
can be software entities, robots, or other AI systems that work together, often exhibiting emer-
gent behavior beyond what each individual agent could accomplish on its own and what would be
predictable when looking only at the capabilities of the individual agents at the bottom level. It is
further possible to combine the multi-agent systems with learning mechanisms. Often, reinforce-
ment learning is applied in such scenarios (Buşoniu et al. 2010). Modeling the parts of the food
chain/network and its involved stakeholders as a multi-agent system has the potential to support
the cohesive analysis, optimization, and understanding of the various activities and their interre-
lationships. Accordingly, we deem research in this direction an integral step toward intelligent
agri-food chains for an integrated food system.

5.4. New Interactions: From Farm to Fork and Back

Traditionally, the food supply chain is arranged in the direction of farm to fork, i.e., business-
to-customer (B2C). As envisioned in this article, the availability and utilization of new digital
tools might completely change those interactions and even reverse their direction [customer-to-
business (C2B)] or allow for a cyclic information flow and process optimization, i.e., from farm to
fork and back. For example, social media can be an essential point of contact for producers where
they can advertise their products (B2C).Nevertheless, consumers can also comment on companies’
social media activities or even contact them directly (C2B). Besides the interaction between the
producer and consumer, new direct interactions between consumers are feasible via digital media,
which must be taken into account by producers. Those interactions include discussions on social
media, cooking recipes, and food sharing (Harvey et al. 2020).

Also, the demand for individualized products (and personalized nutrition) increases. This re-
verts the traditional push-based food supply chain into a pull-based approach or, put another way,
from fork to farm.Consequently, producers have to react more quickly to consumers’ preferences.
Online sales through companies gained higher importance, especially during the COVID-19 pan-
demic (Dannenberg et al. 2020). This offers companies a new channel of direct contact with
customers. For example, Vly, a German company that produces milk alternatives from peas, first
offers new versions of products online and collects customer feedback about the product quality
(Vly 2021).

The producers must monitor and potentially react to those activities (e.g., through comment-
ing or enabling) and new contact channels. Furthermore, increased customer awareness about
the origin of food, which requires traceability (Anastasiadis et al. 2022), strengthens customer
influence.

5.5. Increasing Trust in the Digital Food System through Explainable
Artificial Intelligence

ML models and simulations encompass three distinct categories: descriptive, predictive, and pre-
scriptive (El Morr & Ali-Hassan 2019). Descriptive models analyze historical data to understand
past events and trends. Predictive models use this understanding to forecast future outcomes or
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generalize to unseen situations. Prescriptive models go a step further, recommending optimal ac-
tions to decision-makers to achieve desired results based on predicted (or simulated) scenarios.
Using ML and DL often facilitates predictive and prescriptive models (Roy et al. 2022). However,
the resulting models of those approaches often have the issue of being opaque and are thus often
referred to as black box models.

XAI refers to the capability of AI systems to provide understandable and transparent explana-
tions for their decision-making processes (Gunning & Aha 2019), increasing the trustworthiness
of these systems. Unlike conventional DL models that operate in a black box fashion, XAI
provides human-interpretable insights into how and why AI arrives at specific conclusions. This
interpretability fosters trust and understanding (Das & Rad 2020). Improved trust arises from the
ability to audit AI predictions, detect biases, and identify potential errors. XAI empowers users to
make informed decisions, leading to greater acceptance and adoption of AI technologies.

Simulations might complement XAI to enhance AI model explainability (Feldkamp &
Strassburger 2023). By integrating different already existing simulation approaches for food
processing (e.g., Barroso da Silva et al. 2020, Wilson & Chew 2023), the transparency and trust-
worthiness of AI systems in the food sector can also be improved. Hence, combining XAI and
simulation allows stakeholders to better understand, validate, and interpret AI outcomes and pro-
ductively use the results. However, research in this direction remains sparse and thus concludes
that further work is required.

5.6. Information Provision through Generative Artificial Intelligence

Generative AI systems can create diverse content, ranging from text, images, music, videos, and
more. Large language models such as GPT-3 excel at generating human-like text, enabling vari-
ous applications of such models also in the food domain. For instance, chatbots in food apps could
answer questions about specific foods (about their origin, ingredients, etc.) or give proposals for
daily diet plans after being prompted with the preferences of the customers. The publication of
ChatGPT simplified access to such textual information. StyleGAN, Stable Diffusion, and DALL-
E can produce highly realistic images and create novel visual content based on textual descriptions.
First studies revealed the potential for different industries such as software vendors (Ebert &
Louridas 2023), finance (Krause 2023), and tourism (Dwivedi et al. 2024). Those industries have
in common that the creation and processing of textual information are highly relevant. For the
food industry, the first visible works concentrate on receipt provision (Razzaq et al. 2023) or
determining nutrition values (Venkataramanan et al. 2023).

However, these generative AI systems also come with certain limitations.One primary concern
is their potential to generate misleading or untrue facts (known as hallucination), leading to po-
tentially severe misinformation.Moreover, they might inadvertently amplify existing biases in the
data they were trained on, leading to similarly skewed outputs. Ensuring ethical use and address-
ing these limitations are crucial for the responsible adoption of generative AI systems, especially
in the food sector, which concerns every human being. Still, those systems will, by all indications,
change not only how we retrieve information but also how we state information. This change and
digital literacy must be further incorporated into research and educating students and qualified
personnel.

6. CONCLUSION

Digitalization and all its new tools, particularly AI and ML, hold immense potential for revolu-
tionizing the agri-food chain and transforming it into an integrated food system. By leveraging
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those advanced computational technologies, the agri-food industry can enhance productivity,
sustainability, and efficiency across the entire value chain and network.

Starting from primary production, we discussed how AI and ML in smart agricultural produc-
tion enable farmers to optimize crop and herd management through data acquisition, analysis, and
decision-making. Moreover, in the succeeding food processing and distribution stages, digitaliza-
tion can further streamline operations, reduce waste, or reuse residues in sidestreams, eventually
contributing to increased food security and traceability.

However, several challenges must first be addressed to integrate and exploit the envisioned
promises successfully. Trustworthiness is a crucial factor, as stakeholders must have confidence
in the accuracy and believe in the reliability of these partly opaque technologies. Additionally,
data exchange among different actors in the agri-food system requires interoperability through
standardized protocols and secure platforms to ensure seamless communication and information
exchange. Ensuring data confidentiality for safeguarding data sovereignty is paramount, as sensi-
tive information across different organizations must be protected from unauthorized access. By
conducting research and developing innovative methods to overcome these challenges, the agri-
food sector can fully harness the potential of digitalization, fostering the transition toward a more
resilient, sustainable, and interconnected global food system.

SUMMARY POINTS

1. Artificial intelligence (AI), machine learning (ML), and deep learning offer chain-wide
integrated data analytics.

2. Internet of Things (IoT) technology supports efficient and intelligent data analysis and
connection of systems.

3. Edge computing enables real-time data analytics close to the sources of the data.

4. Digital food twins need to model the chemo-physical and microbiological properties of
the food and have a large potential for traceability.

5. Explainable AI (XAI) offers understandable and transparent explanations to foster trust
and comprehension of ML/AI systems.

6. Generative AI can create diverse content, but its potential for food systems is yet to be
explored.

7. Modern information technology (IT) can transform the stages in the agri-food chain
into an integrated food system.This requires interdisciplinary cooperation between data
scientists, IT personnel, engineers, and stakeholders of the agri-food chain.
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