
Performance Evaluation for a Post-Quantum
Public-Key Cryptosystem

Thomas Prantl, Dominik Prantl, Lukas Beierlieb,
Lukas Iffländer, Alexandra Dmitrienko and Samuel Kounev

firstname.lastname@uni-wuerzburg.de
University of Würzburg

Christian Krupitzer
christian.krupitzer@uni-hohenheim.de

University of Hohenheim

Abstract—Quantum Computing threatens security of today’s
systems. Confidence in today’s security technologies largely
relies on Public Key Cryptography (PKC), which depends on
computational difficulty of mathematical problems that cannot
be solved efficiently using any technology available today. This
will, however, change once a sufficiently capable quantum com-
puter will become available. Similarly, security of symmetric
crypto algorithms will also be substantially weakened. Current
progress in research proves that Quantum Computing is no
longer science fiction. Hence, research and development of post-
quantum cryptographic algorithms that can withstand attacks
in Quantum Computing era are of paramount importance. This
paper complements existing research in this domain with a
performance analysis of a post-quantum cryptosystem capable
of encrypting and decrypting messages either bit-wise or string-
wise. Specifically, we describe a workflow for implementing the
scheme, design a reproducible hardware performance evaluation
testbed for an IoT and an online shopping scenario, define perfor-
mance metrics, and perform performance evaluation case studies.
Our performance analysis shows that bit-wise encryption and
decryption and the corresponding key generation fits resource-
constrained IoT microcontrollers as well as on average laptops.
The encryption and decryption of a bit each take less than 30
ms and the key generation less than 300 ms.

Index Terms—Post-Quantum Public-Key Cryptosystem, Per-
formance, Energy Efficiency, Computation Time

I. INTRODUCTION

The use of quantum computers with their unimaginable
computing power no longer seems to be just dreams of the
future but has almost become a reality. A computer, built on
the strange properties of quantum mechanics, can in certain
cases perform calculations exponentially faster than computers
built on classical bits. Already back in October 2019, Google
announced that they had developed a quantum computer that
is 10.000 times faster than modern supercomputers at the task
of sampling the output of a pseudo-random quantum circuit
[1], [2]. This computing power achieved by current quantum
computers is already extremely impressive and will increase
at an unimagined rate in the coming years [3]. This increasing
computing power of quantum computers will be an essential
component for the acceleration of many conventional appli-
cations. For example, the calculation of different foldings of
proteins in three-dimensional space using quantum computers

can be reduced from years to a few minutes [4]. This will
allow the pharmaceutical industry to develop new drugs in a
fraction of the time required today.

However, besides all these advantages that quantum comput-
ers can offer, it can also accelerate or enable applications that
would be dangerous for many aspects of our modern life. An
increasing number of everyday activities—such as shopping
or booking travels—are shifted to the Internet. This is only
made possible through deployment of the effective and high-
performance cryptographic algorithms. Confidence in security
of primitives used in today’s cryptosystems is very high, and
attackers seldom attempt direct attacks. Instead, they exploit
other attack vectors, such as social engineering, to penetrate
the system. With the appearance of the sufficiently capable
quantum computer, security guarantees provided by today’s
cryptographic systems will vanish.

In order to continue operating securely on the Internet in
the future, the US government’s Institute NIST has launched
a competition and standardization process for post-quantum
cryptosystems [5]. In addition to security guarantees, it is
also crucial that possible post-quantum cryptosystems have
reasonable performance and can be used on all devices, from
powerful PCs to resource-constrained IoT devices.

A promising candidate for a post-quantum cryptosystem
was presented by Aggarwal et al. in 2018 [6], however,
the original paper limited its analysis to security but left
performance analysis out of scope. Therefore, in this paper, we
aim to fill the gap and complement the work of Aggarwal et
al. [6] by extending it with a rigorous performance analysis of
the system. More specifically, this paper provides the following
contributions:

• We describe a workflow for using the scheme.
• We further contribute a reproducible hardware testbed for

the performance measurements of the scheme in an on-
line shopping and IoT scenario, including corresponding
implementations of the cryptosystem and the definition
of performance metrics.

• We analyze the performance of the cryptosystem using
our testbed and report observed measurements.

We want to highlight that this paper does not consider eval-
uation whether the scheme can be attacked using Quantum
Computing, since it was the focus of the original and other
publications [6]–[8]. Instead, our focus lies on the scheme’sCopyright Notice: 978-1-6654-4331-9/21/$31.00 ©2021 IEEE

applicability with current hardware. The remainder of this
paper is structured as follows. In Section II, we present the
mathematical concepts and algorithms of the post-quantum
cryptosystem proposed by Aggarwal et al. [6]. Section III
introduces two workflows on how to use the proposed cryp-
tosystem in practice. In Section IV, we present a performance
evaluation environment. Sections V and VI deal with the
performance evaluation and related work. Finally, a summary
of the paper is given in Section VII.

II. BACKGROUND

In the course of this section, we present the fundamental
mathematical concepts and algorithms for the realization of the
post-quantum cryptosystem proposed by Aggarwal et al. [6].

1) Mersenne prime number: All numbers p are called
Mersenne numbers, for which a prime number n exists so
that p = 2n − 1. If p itself is prime, it is called a Mersenne
prime number. Over the years, more and more exponents n
that lead to Mersenne prime numbers have been found, and a
list of the numbers found is available at [9]. The first sixteen
exponents which give Mersenne primes are 2, 3, 5, 7, 13, 17,
19, 31, 61, 89, 107, 127, 521, 607, 1279, and 2203.

2) Hamming weight: The Hamming weight of a string
S ∈ {0, 1}∗ is the number of non-zero entries in S [10].

3) Reed–Muller code: To make transmissions of messages
more robust against transmission errors, error-correcting codes
like Reed-Muller codes can be employed. Formally, Reed-
Muller codes are defined by the function RM(r,m), whose
parameters r and m determine what fixed payload size can be
encoded and how long the encoded message is. In concrete
terms, the encodable message length can be calculated from
r and m as k =

∑r
1

(
m
i

)
. The length of a message encoded

with r and m is 2m [11].
4) Fisher–Yates shuffle: To obtain a random permutation of

a given array, we use the Fisher-Yates shuffle algorithm. The
reason for choosing the Fisher-Yates shuffle algorithm is that
it shuffles an array so that all n! possible permutations are
equally likely [12].

5) Reservoir sampling: The reservoir sampling algorithm
randomly selects k distinct elements from an array A of size
n and returns them in an array. The reason for choosing the
reservoir sampling algorithm is that all

(
n
k

)
possible result

arrays are equally probable [12]. Thus, it can be used for
generating a random bit array of length k by applying it to an
array consisting of k ones and k zeros and selecting k element
from this array.

III. WORKFLOW FOR THE CRYPTOSYSTEM

In the following, we present two workflows for using
the presented cryptosystem in practice. The first workflow
describes how individual bits can be encrypted and decrypted
using the proposed cryptosystem and the second how bit
strings can be encrypted and decrypted. (Note that in [6] for
the bit string variant two different variants are considered,
one that uses Reed Muller codes and one that uses repetition
codes. Since the variant using repetition codes lacks a rigorous

analysis of the decryption error probability, we use in the
following the Reed Muller code variant). For each workflow,
the description includes not only the encryption and decryption
process but also the creation of the required keys. For each
workflow, we first present the conceptual flow according to
[6] and then how the individual steps of the workflow can
be implemented in practice. Note that all following integer
computations are modulo p, respectively.

A. Concept for the Bit-by-Bit En-/Decryption

1) Key Generation: To enable the decryption and encryp-
tion of a single bit b, a corresponding secrete key SK
and public key PK = {pk1, pk2, pk3} must be generated.
The generation of PK first requires to choose the security
parameter λ (for which 128 or 256 is usually chosen in
practice). Next, a Mersenne prime p = 2pk1 − 1 and a natural
number pk2 must be chosen such that pk1 and pk2 satisfy the
Inequalities 1 and 2.(

pk1
pk2

)
≥ 2λ (1) 4pk22 < pk1 ≤ 16pk22 (2)

Using pk1 and pk2, the two bit strings F and SK can
now be determined, which are used to calculate pk3. The two
bit strings F and SK are randomly selected from all pk1-bit
strings with Hamming weight pk2. Using the two bit strings
F and SK and equation 3, pk3 can now be calculated. To do
this, F and SK must first be cast from bit strings to integers
using the function int.

pk3 = int(F)/int(SK) (3)

2) Encryption: By means of PK, the ciphertext C of a
single bit b can now be calculated using Equation 4. Thereby
the calculation of Equation 4 requires to choose two bit strings
A and D randomly from all pk1-bit strings with Hamming
weight pk2.

C = (−1)int(b)
(
int(A) ∗ pk3 + int(D)

)
(4)

3) Decryption: The encrypted bit b can be calculated back
from a ciphertext C using the two Equations 5 and 6 and
the keys SK and PK. To do this, we first must calculate the
interim result d according to Equation 5. Therefore SK is first
cast to an integer and then multiplied by C. The result of this
multiplication is cast back into a bit string using the function
bit. The Hamming weight of the string determined in this way
corresponds to the value of d. Using Equation 6, the value of
the encrypted bit can now be determined from d. As a result
for the bit b we can get either 0, 1 or ⊥, where ⊥ stands for
the case that the encryption and subsequent decryption failed.

d = H

(
bit
(
C ∗ int(SK)

))
(5)

d =

 0, d ≤ 2pk22
1, pk1 − 2pk22 ≤ d
⊥, else

(6)

B. Workflow for the Bit-by-Bit En-/Decryption

The bitwise cryptosystem allows another party to send out
bitwise encrypted messages. For this purpose, we must provide
the other party with a public key PK and a secret key SK for
ourselves. To realize the required keys, we must first choose
the security parameter λ. In practice, λ describes the length of
the keys used, which is why we choose 128 as the value for λ,
a common choice for key lengths in practice. Next, we need to
choose pk1 and pk2 so that equations 1 and 2 are satisfied. To
determine these two values, we follow brute-force procedures
and systematically go through all possible values for pk1 in
ascending order. (Note that while the key parts pk1 and pk2
can also be determined by an attacker, this does not allow an
attacker to infer pk3 and sk directly. This is because the further
determination of pk3 and sk requires the choice of random
strings.) Here, pk1 corresponds to the value n of a Mersenne
Prime Number, for which there are corresponding listings. For
each value of pk1 we first determine all values for pk2 that
satisfy Equation 2 and check for these values whether they
also satisfy Equation 1. We stop the brute-force search when
we have found the first valid combination of pk1 and pk2. The
interim results of the brute-force search are shown in Table I.
The first value for pk1 for which there are values for pk2, so
that the Inequalities 1 and 2 are fulfilled is for pk1 = 2203,
see last line of Table I. From this line, we randomly choose
the values 2203 and 23 for pk1 and pk2.

TABLE I
BRUTE-FORCE SEARCH FOR VALUES FOR pk1 AND pk2 .

pk1
pk2 satisfying pk2 satisfying

Equation 2 Equation 1 and 2
2
3
5 1
7 1

13 1
17 2
19 2
31 2
61 2, 3
89 3, 4
107 3, 4, 5
127 3, 4, 5
521 6, 7, 8, 9, 10, 11
607 7, 8, 9, 10, 11, 12

1279 9, 10, 11, 12, 13, 14,
15, 16, 17

2203 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21,
18, 19, 20, 21, 22, 23 22, 23

To illustrate how the brute-force search works, we explain
the search step for pk1 = 5 as an example. First, we determine
all possible values of pk2 that satisfy Equation 2 for pk1 =
5. To do this, we substitute pk1 = 5 into the Inequalitie 2
and solve for pk2, which gives us the following Inequality:√

5/16 = 0.55... ≤ pk2 <
√

5/4 = 1.11... . Since pk2 ∈
N, the only option to choose pk2 such that it satisfies this
inequality is pk2 = 1. Finally, for all values for pk2 which
satisfy the Inequality 2 — in our case only the value 1 — we
have to check whether they satisfy also the Inequality 1. That

pk2 = 1 does not satisfy this inequality can be seen when the
value is substituted into the inequality since 5 is not greater
than or equal 2128. Thus, the brute-force search in the pk1 = 5
step could not find a suitable assignment for pk1 and pk2, so
that the Inequalities 1 and 2 are both satisfied. For this reason,
the search must be continued with pk1 = 7.

To generate SK, we need to choose a random 2203-bit
string with Hamming weight 23. To do this, we first generate
a 2203-bit long string whose first 23 bits are ones and the re-
maining 2180 digits are zeros. To obtain a random permutation
of this bit string for SK, we apply the Fisher–Yates shuffle
algorithm to it. To calculate the last missing key component
pk3, Equation 3 additionally requires the bit string F , which
we can generate again analogous to the bit string SK.
C. Concept for the Bit String En-/Decryption

1) Key Generation: Encrypting/decrypting bit strings re-
quires a public key PK = {pk1, pk2, pk3}/secret key SK =
(sk1, sk2) to be determined. Therefore the security parameter
λ and a Mersenne prime number must be chosen such that λ
and the corresponding n of p satisfy the Inequalty 7.

16λ2 ≥ n > 10λ2 (7)

Next the bit strings sk1, G, and pk1 are determined.
Thereby, sk1 and G are randomly selected from all n-bit
strings with Hamming weight λ, and pk1 is randomly selected
from all n-bit strings. Thus, all key components except for pk2,
pk3, and sk2 are already generated. The missing component
pk2 can be calculated using

pk2 = int(SK) ∗ int(pk1) + int(G) (8)

The component pk3 consists of a function, more precisely
the error-correcting encoding function of the Reed-Muller code
and sk2 is the corresponding decoding function.

2) Encryption: Using PK, a bit string m of length λ can
be encrypted. The calculation of the ciphertext C = (C1, C2)
requires the random selection of the bit strings X , Y and Z
from all strings with Hamming weight λ. Then, by means of
Equations 9 and 10, C1 and C2 can be calculated. Thereby ⊕
in Equation 9 and 11 denotes the bitwise Xor connection.

C1 = int(X) ∗ int(pk1) + int(Y) (9)

C2 = bin
(
int(X) ∗ int(pk2) + int(Z)

)
⊕ pk3(m) (10)

3) Decryption: From a ciphertext C, the original message
can be decoded using SK and Equation 11.

mdecrypt = sk2
(
(sk1 ∗ c1)⊕ c2

)
(11)

D. Workflow for the Bit String En-/Decryption

The string-wise cryptosystem allows another party to send
us encrypted bit strings if we generate a corresponding public
key PK for them and a secret key SK for us. Providing
these keys first requires choosing the security level λ and a
Mersenne prime p such that the n and λ belonging to p satisfy
Inequality 7. For this choice, we use the recommendation (λ =
256, n = 756839, and p = 2756839−1) of the original paper [6]

for repetition codes, since it also satisfies Inequality 7. The
next step is the generation of sk1, G and pk1. For sk1 and G,
we first generate a 756839 bit string with the first 256 digits
consisting of ones and the remaining digits consisting of zeros
and then apply the Fisher-Yates shuffle algorithm. For pk1, we
first generate a 1513678-bit long string whose first 756839 bits
consist of ones and the remaining 756839 consist of zeros.
From this bit string, we randomly select a 756839-bit string
using the Reservoir Sampling algorithm. After these bit strings
are selected, the key component pk2 can be calculated using
Equation 8. For sk2 and pk1, we choose the corresponding
en- and decode functions of the Reed-Muller Code R(2, 22),
following the recommendation in the original paper [6]. As a
result, messages of length 254 bits can be encrypted.

IV. EVALUATION ENVIRONMENT

To evaluate the performance of the presented post-quantum
cryptosystem, we present below (1) workloads for the cryp-
tosystem, (2) metrics, and (3) measurement set ups.

A. Workload

In the following, we describe the workload patterns con-
sidered for evaluating the cryptosystem’s performance with
respect to key generation and encryption/decryption. As we
can define the former jointly for the bit-for-bit and the bit-
string variants of the cryptosystem but have to define the latter
depending on the respective variant.

1) Key Generation: All components of both PK and SK
are generated a total of n times in succession.

2) Bit-wise Encryption/ecryption: To simulate the encryp-
tion or decryption of a message of B bits, a bit is encrypted
n times in succession, or the ciphertext of an encrypted bit is
decrypted n times in succession.

3) Bit-string-wise Encryption/Decryption: A B-bit string is
encrypted n times in a row; respectively, the ciphertext of an
encrypted B-bit string is decrypted n times in a row.

B. Metrics

We want to evaluate the post-quantum cryptosystem focus-
ing on the applicability for IoT devices, which typically have
limited hardware resources and finite power supply. Thus, we
choose energy efficiency as the first metric. Following the
SPEC specifications [13], [14] and [15], we define the energy
efficiency E in Equation 12 as the ratio of the throughput T
(see Equation 21) to the power consumption W . The accuracy
of the energy efficiency is calculated using Gaussian error
propagation, see Equation 13.

E =
Throughput

Power Consumption
=

T

W
(12)

∆E =

√
∆T 2

W 2
+
T 2 ∗∆W 2

W 4
(13)

Next, we define the power consumption W , including its
error ∆W , and the throughput T , again including its error
∆T . Both are required to calculate the energy efficiency.

Following [15], in Equation 14 we define W as the average
power consumption per second and in Equation 15 ∆W , using
Gaussian error propagation. In these Equations, ∆Wi is the
accuracy of the measured power consumption during the i-th
second, Wi represents the power consumption during the ith
second, and n represents the measurement duration in seconds.

W =
1

n

n∑
i=1

Wi (14) ∆W =
1

n

√√√√ n∑
i=1

∆W 2
i (15)

Following [15], we also define the throughput as the
weighted operations performed during a given period t relative
to t and the throughput accuracy ∆T based on Gaussian error
propagation. We distinguish three operations: (i) Encrypting
Be bits, (ii) decrypting Bd bits, and (iii) generating a key
pair, consisting of PK and SK. The first two operations are
weighted by the number of bits and the last operation by a
factor of 1. The throughput Td for decrypting Bd bits, for
example, would thus be calculated according to Equation 16.
Using Gaussian error propagation, the throughput accuracy can
be calculated in this case according to Equation 17, assuming
each decryption process has been successful. In this Equation,
∆t represents the accuracy of the observed time frame t. The
throughput, including errors, for key generation or encryption
of messages, can be calculated analogously to Equations 19
and 20 if Bd is replaced by the corresponding weighting.

Td =
Bd
t

(16) ∆Td =
Bd ∗∆t

t2
(17)

In addition to energy efficiency, we also consider as metrics
the average time it takes to (i) encrypt messages te, (ii)
decrypt messages td, and (iii) generate keys tg . te can be
calculated using Equation 18, where n stands for the number
of encryption operations performed and tei for the time of
the i-th encryption operation. The error can be determined
by Gaussian error propagation using Equation 19. Here, tei
stands for the accuracy of the determination of the duration
for the i-th encryption process. td and tg can be calculated
analogously.

te =
1

n

n∑
i=1

tei (18) ∆te =
1

n

√√√√ n∑
i=1

∆t2ei (19)

C. Measurement Setups

In the following, we describe two measurement setups for an
IoT and a online shopping use case. We present the hardware
and software used for each setup. The IoT Measurement Setup
consists of the following three components: an IoT device that
wants to send or receive encrypted messages, a power supply
for the IoT device, and a power meter to measure the energy
consumption of the IoT device. For the realization of the
measurement setup, we adapt the measurement environment
for group encryption from [15] to Public-Key cryptography.
We choose the ESP8266 as the IoT device since it is a popular

microcontroller. Amongst many other use cases, it is empolyed
for heart rate monitoring [16] and home automation [17]. To
power the ESP8266, we use the Elegoo Power Supply Module
1, which regulates standard primary voltages down to the 3.3
V required by the ESP8266. A suitable power meter has to be
sufficiently accurate to measure the small voltages and currents
of IoT devices properly. The Yokogawa WT310 fulfills this
requirement. According to the manufacturer, its accuracy in
the relevant measuring range is ±(0.1% of reading + 0.2% of
range) [18] and in our case 0.0006 W. These considerations
result in the final calculation of ∆W according to Equation 20.

∆W =
1

n

√√√√ n∑
i=1

(0.1% ∗Wi + 0.0006 ∗W)2 (20)

To calculate arithmetic operations on the ESP8266, we use
the mini-gmp library [19], which is based on the GMP library
in version 6.2.0. To evaluate the suitability of the post-quantum
cryptosystem for the everyday use case of online shopping, we
decided to evaluate its performance on a commercial laptop.
Specifically, we are using a Lenovo B50-50 80S2004AGE
with an Intel® Core™ i3-5005U 2x 2.00 GHz, Intel® HD
Graphics 5500 Shared Memory, 4 GB RAM, and 500 GB
HDD. We are using Ubuntu 16.04.4 LTS as the operating
system. To calculate arithmetic operations, we use the GMP
library in version 6.2.0 . We use the implementation of [20]
for implementing the Reed-Muller codes.

V. PERFORMANCE EVALUATION

We analyze the proposed post-quantum cryptosystem’s per-
formance, first in an online shopping scenario and then in an
IoT scenario.

A. Online Shopping Use Case

We investigate the performance in our online shopping
scenario first for the bit-wise encryption and decryption variant
and then for the bit-string-wise variants. We only consider
the required computation times as a metric since many tasks
are typically processed in parallel in the background by the
operating system on a laptop, and thus an isolated analysis
of the energy consumption of the cryptosystem on the laptop
would not correspond to reality.

1) Bit-wise Variant: The required time for bit-by-bit encod-
ing and decoding can be seen in Figures 1 and 2, respectively.
We chose 100 to 1000 kbit as the measurement range since
we believe that this range should be sufficient for the message
size to be encrypted for online shopping. Figures 1 and 2
allow us to draw the following three conclusions: (1) on the
laptop, bit-wise encryption of messages is slower than bit-wise
decryption; (2) the time required for bit-wise encryption and
decryption increases linearly with the payload size; and (3)
bit-wise encryption and decryption of up to 1 Mbit is possible
on the laptop in less than half a minute. The key pair required
for decryption and encryption, consisting of a private and a
public key, can be generated on the laptop in (118 ± 11) ms.

200 400 600 800 1,000

10

20

Message size [kbit]

Ti
m

e
[s

]

Fig. 1. Encryption times of bit-by-bit encryption on the laptop for different
payload sizes

200 400 600 800 1,000

1
2
3

Message size [kbit]

Ti
m

e
[s

]

Fig. 2. Decryption times of bit-by-bit encryption on the laptop.

2) String-wise Variant: Regarding the required computa-
tion times of the bit-string-wise variant, we first consider
the encryption times on the laptop. We have selected the
measurement range analogously to the bit-wise variant. The
measured values are plotted in Figure 3. Based on this figure,
we can conclude: (1) the required encryption time increases
abruptly in 254-bit steps in each case. The reason for this is
that the original message is divided into 254-bit sub-messages.
If a packet consists of less than 254 bits, it is scaled up to 254
bits using leading zeros. (2) The bit-string-wise encryption of
messages is slower than the bit-wise encryption variant.

We cannot present any concrete measurement results for
the bit-string-wise decoding of messages because the string-
wise decryption process take too long. We performed test
measurements but stopped them after 24 hours because the
decryption did not terminate during this time. We conclude that
our implementation or its parameter configuration influences
the results as the literature shows that the complexity of Reed-
Muller codes is O(n log n) [21]. A complexity of O(n log n)
does not look like an exponential progression at first glance.
However, it must not be forgotten that, in this context, n stands
for the code word length, which is 2m, where m stands for the
payload size. For this reason, we assume that the string-wise
variant is not suitable for practical use since the decryption
process has exponential runtime and therefore takes too long
in practice. (Note: For safety reasons, other parameters for the
Reed-Muller code cannot be selected at will.)

Nevertheless, we were able to determine the time required

100 101 102 103 104 105 106

34

35

Message size [kbit]

Ti
m

e
[s

]

Fig. 3. Encryption times of bit-string encryption on the laptop.

0 10 20 30 40 50 60
0

5

10

Message size [Bytes]

Ti
m

e
[s

]

Fig. 4. Encryption times of bit-by-bit encryption on ESP8266.

0 10 20 30 40 50 60
0

1

2

Message size [Bytes]

Ti
m

e
[s

]

Fig. 5. Decryption times of bit-by-bit decryption on ESP8266.

to generate the necessary keys for the string-wise encryption
and decryption variant on the laptop, which is (140 ± 13) ms.

B. IoT Use Case

For our IoT use case, we only present the bit-wise vari-
ant of the method because the bit-string variant is already
impracticale on the laptop. For the analysis of the bit-wise
variant, we first analyze the calculation times and then the
energy efficiency.

1) Computation times: For the analysis of the required time
for bit-wise encryption and decryption, we consider payload
sizes up to 60 bytes. The reason for choosing this measurement
range is that IoT messages consist of short messages that are
typically smaller than 40 bytes [22]. The measured times of the
bit-wise encryption and decryption variant are illustrated in the
Figures 4 and 5. The following conclusions can be drawn from
these figures: (1) for both bit-wise decryption and encryption
on the ESP8266, the required computation time increases
linearly with the payload size; (2) on the ESP8266, bit-wise
decryption is faster than bit-wise encryption; and (3) on the
ESP8266, the times required for bit-wise encryption and de-
cryption are in the range of seconds. The bit-by-bit encryption
and decryption process of the post-quantum cryptosystem is
thus significantly slower than common standardized encryption
methods. For comparison, using AES-CBC-256 [23] on the
ESP8266 to encrypt and decrypt a message with a payload
of 60 bytes requires less than one second. Nevertheless, the
measurement results show that a post-quantum cryptosystem
can certainly be used on IoT devices and that the computation
of such a method can be performed within seconds. In
order for bit-wise encryption and decryption to function at
all, corresponding public secret keys are required. To find out
whether these keys can be generated directly on an IoT device
or whether they have to be generated on a powerful computer
and then transferred to the IoT device, we consider the key
generation on the ESP8266 next. Our measurements showed
that the ESP8266 generates key pairs, consisting of a public
and a private key, in (243 ± 12) ms. These measurement
results allow the conclusion that in addition to the encryption
and decryption of messages in the range of seconds, the

0 10 20 30 40 50 60
0

200
400
600
800

Message size [Bytes]

E
ne

rg
y

ef
fic

ie
nc

y
[B

yt
es
\J

ou
le

]

Fig. 6. Energy efficiency of bit-by-bit encryption on ESP8266.

0 10 20 30 40 50 60
0

1

2

·104

Message size [Bytes]

E
ne

rg
y

ef
fic

ie
nc

y
[B

yt
es
\J

ou
le

]

Fig. 7. Energy efficiency of bit-by-bit decryption on ESP8266.

generation of the necessary public and secret key on an IoT
device is also possible in less than one second. Thus, post-
quantum cryptosystems are feasible for IoT devices.

2) Energy Efficiency: After proving that the necessary com-
putations can be performed sufficiently fast on the ESP8266,
we analyze the occurring power consumption. Figures 6 and
7 illustrate the energy efficiency of bit-by-bit encryption and
decryption, respectively, for various payloads sizes. The mea-
surements lead to the conclusion that the energy efficiency
of bit-wise encryption and decryption decreases rapidly as
the payload increases. An overall drop in energy efficiency
with increasing payload was to be expected, but there are also
encryption and decryption methods whose energy efficiency
remains almost constant for such small payloads [15]. The
reason for the decrease in energy efficiency is that the encryp-
tion and decryption of a bit happen independently of the rest of
the bits and thus have a strongly constant behavior. However,
what remains constant in the proposed cryptosystem is the
energy efficiency for key generation. Around 77 ± 2 key pairs,
each consisting of a public and a secret key, can be generated
per Joule. In addition to showing that the energy efficiency
decreases as the payload increases, our measurements can be
used to estimate how long the cryptosystem on the ESP8266
can operate with a given battery. For example, if we assume
that the ESP8266 is powered by a CR123 A Lithium battery
(which provides 4.65 kJ [24]) and we overestimate the number
of encrypted bits per Joule by 870, a maximum of 4045500
encryption operations of a single bit would be possible.

VI. RELATED WORK

In this section, we review related work and highlight the
novelty of our contribution. In [25], the authors evaluated
the performance of different post-quantum cryptosystems on
a Samsung Galaxy A5 smartphone. The metrics considered

were computational time, required memory, and power con-
sumption. We differ from this work in that for our metrics
we specify how we determine the accuracy of the particular
performance values and state. Additionally, we consider a
range of payload sizes for the decryption and encryption
process rather than just one payload size. Furthermore, with
the ESP8266 microcontroller, we have chosen significantly
weaker hardware than an Android phone.

The authors of [26] also compare different post-quantum
methods among each other and with pre-quantum methods.
However, in terms of metrics, they only focus on storage
requirements of keys and transmitted data, like signatures or
cipher texts. However, it does not show how the storage space
requirements were determined in individual cases, and there
are no statements about the accuracy of the data.

In [27], the authors introduce a new post-quantum public
cryptosystem called spLWE. They also compare its perfor-
mance with other post-quantum methods on a Macbook Pro in
terms of memory requirements and computation times. With
regard to encryption and decryption, only messages with a
fixed message size are considered and there is no information
about the accuracy of the presented performance values.

VII. CONCLUSION

Besides all the advantages that quantum computing can
offer, its speed is a threat to most state-of-the-art cryptographic
protocols. In this paper, we rely on an extended version of
the scheme from [6], which provides a Post-Quantum Public-
Key Cryptosystem. Specifically, we describe a workflow for
implementing the scheme, present a design for a reproducible
hardware performance evaluation testbeds within an IoT and
online shopping context, define performance metrics, and
perform performance evaluation case studies. Our performance
analysis shows that bit-wise encryption and decryption and
the corresponding key generation suits average laptops and
even resource-constrained microcontrollers, which IoT devices
typically employ. As future work, we identified several is-
sues. Based on the “No free lunch” theorem known from
optimization and machine learning techniques—i.e., there is
no single technique that is beneficial for all use cases—we
hypothesize that also different cryptographic protocols might
be beneficial for different systems and situations. Hence, we
plan to investigate the viability of a self-learning system that is
able to adjust or switch the cryptographic protocol based on a
decision logic that follows principles of Self-aware Computing
Systems [28]. Additionally, we plan to extend our analysis in
different network situations using the tools [29] and [30] and
to repeat our analysis of the performance impact of TLS on
MQTT [31] using post-quantum cryptosystems for TLS.

ACKNOWLEDGMENT

This research has been funded by the Federal Ministry of
Education and Research of Germany in the framework KMU-
innovativ - Verbundprojekt: Secure Internet of Things Manage-
ment Platform - SIMPL (project number 16KIS0852) [32].

REFERENCES

[1] W. Roush, “The Google-IBM “quantum supremacy” feud,” 2020.
[2] F. Arute et al., “Quantum supremacy using a programmable supercon-

ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.
[3] K. Hartnett, “A New “Law” Suggests Quantum Supremacy Could

Happen This Year,” 2019.
[4] L. Tvede, “The Present And Future Of Quantum Computing Expansion,”

2020.
[5] N. I. of Standards and Technology, “NIST’s Post-Quantum Cryptography

Program Enters ‘Selection Round’,” 2020.
[6] D. Aggarwal et al., “A new public-key cryptosystem via mersenne

numbers,” in Annual International Cryptology Conference, 2018.
[7] M. Beunardeau, A. Connolly, R. Géraud, and D. Naccache, “On the

hardness of the mersenne low hamming ratio assumption.”
[8] K. de Boer, L. Ducas, S. Jeffery, and R. de Wolf, “Attacks on the ajps

mersenne-based cryptosystem.”
[9] T. O. Foundation, “Mersenne primes (of form 2p − 1 where p is a

prime),” 2020, online available under Accessed on 27.11.2020.
[10] T. Helleseth, T. Kløve, and O. Ytrehus, “Generalized hamming weights

of linear codes,” Information Theory, IEEE Transactions on, 1992.
[11] W. Lee, Y.-S. Kim, and J.-S. No, “A new signature scheme based on

punctured reed–muller code with random insertion,” 10 2017.
[12] D. Lemire, “Fast random integer generation in an inter-

val,” CoRR, vol. abs/1805.10941, 2018. [Online]. Available:
http://arxiv.org/abs/1805.10941

[13] S.P.E.C, “Power and performance benchmark methodology v2.2,” 2014.
[14] T. Prantl, P. Ten, L. Iffländer, S. Herrnleben, A. Dmitrenko, S. Kounev,

and C. Krupitzer, “Towards a group encryption scheme benchmark: A
view on centralized schemes with focus on iot,” in Proceedings of the
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 233–240.

[15] T. Prantl et al., “Evaluating the performance of a state-of-the-art group-
oriented encryption scheme for dynamic groups in an iot scenario,” in
MASCOTS, ser. MASCOTS ’20, November 2020.

[16] A. Škraba et al., “Prototype of group heart rate monitoring with nodemcu
esp8266,” in 2017 6th MECO.

[17] R. K. Kodali et al., “Mqtt based home automation system using
esp8266,” in IEEE Region 10 Humanitarian Technology Conference.

[18] Y. T. . M. Corporation, “WT300 Serie Digitale Leistungsmessgeräte.”
[19] CAFxX, “gmp-ino,” online available under

https://github.com/CAFxX/gmp-ino, Accessed on 01.01.2021.
[20] S. Raaphorst, “Reed-muller codes,” Carleton University, May, 2003.
[21] I. Dumer, “On polylogarithmic decoding complexity for reed-muller

codes,” 06 2004, pp. 327–327.
[22] I. Management Association, The Internet of Things: Breakthroughs in

Research and Practice: Breakthroughs in Research and Practice, ser.
Critical explorations.

[23] M. J. Dworkin, “Nist special publication 800-38a. recommendation for
block cipher modes of operation - methods and techniques,” Gaithers-
burg, MD, USA, Tech. Rep., 2001.

[24] CR 123 A Lithium Manganese Dioxide, VARTA Microbattery GmbH.
[25] N. Chikouche et al., “Performance evaluation of post-quantum public-

key cryptography in smart mobile devices,” in Challenges and Oppor-
tunities in the Digital Era, 2018.

[26] R. Niederhagen et al., “Practical post-quantum cryptography,” Fraun-
hofer SIT, 2017.

[27] J. H. Cheon et al., “A practical post-quantum public-key cryptosystem
based on splwe,” in Information Security and Cryptology – ICISC 2016.

[28] C. Krupitzer et al., “An Overview of Design Patterns for Self-Adaptive
Systems in the Context of the Internet of Things,” IEEE Access, 2020.

[29] S. Herrnleben et al., “An IoT Network Emulator for Analyzing the
Influence of Varying Network Quality,” in SIMUtools, 2021.

[30] S. Herrnleben, M. Leidinger et al., “ComBench: A Benchmarking
Framework for Publish/Subscribe Communication Protocols under Net-
work Limitations,” ser. VALUETOOLS ’21, 2021.

[31] T. Prantl, L. Iffländer, S. Herrnleben, S. Engel, S. Kounev, and
C. Krupitzer, “Performance impact analysis of securing mqtt using
tls,” in Proceedings of the ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 241–248.

[32] T. Prantl et al., “Simpl: Secure iot management platform,” in ITG
Workshop on IT Security (ITSec), 2020.

