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Abstract: Sourdough can improve bakery products’ shelf life, sensory properties, and nutrient com-
position. To ensure high-quality sourdough, the fermentation has to be monitored. The characteristic
process variables for sourdough fermentation are pH and the degree of acidity measured as total
titratable acidity (TTA). The time- and cost-intensive offline measurement of process variables can
be improved by utilizing online gas measurements in prediction models. Therefore, a gas sensor
array (GSA) system was used to monitor the fermentation process of sourdough online by correlation
of exhaust gas data with offline measurement values of the process variables. Three methods were
tested to utilize the extracted features from GSA to create the models. The most robust prediction
models were achieved using a PCA (Principal Component Analysis) on all features and combined
two fermentations. The calibrations with the extracted features had a percentage root mean square
error (RMSE) from 1.4% to 12% for the pH and from 2.7% to 9.3% for the TTA. The coefficient of
determination (R2) for these calibrations was 0.94 to 0.998 for the pH and 0.947 to 0.994 for the
TTA. The obtained results indicate that the online measurement of exhaust gas from sourdough
fermentations with gas sensor arrays can be a cheap and efficient application to predict pH and TTA.

Keywords: gas sensor; machine learning; process analytics; process modeling; food monitoring;
sourdough

1. Introduction

Sourdough is one of the oldest examples of natural starters, mainly used for making
fermented baked goods as an alternative to baker’s yeast and chemical leavening. Sour-
dough fermentation is a unique tool for improving the rheology, sensory properties, shelf
life, and nutrient composition of gluten-free formulation [1]. The quality and properties
of sourdough depend on many technological and ecological influences. The most critical
factors for sourdough production are contributed by the contents and enzymatic activity of
the cereal, the controllable process parameters, and the microflora of lactic acid bacteria,
yeasts, and other microorganisms [2]. Sourdough fermentation is characterized by the
process variables’ pH, which is essential for inhibiting enzyme activity, and the degree of
acidity measured as total titratable acidity (TTA), which accounts for the evaluation of the
sensory properties.

The ability of gas sensors to measure specific gases like O2, CO2, and hydrogen
sulfides which are linked to spoilage is a critical topic with respect to the attributes of
quality, freshness, and safety conditions [3]. Fermentation monitoring uses gas sensor
arrays that combine specific gas sensor signals with pattern recognition [4]. The sensor is
set between qualitative (i.e., improve sensory attributes) or quantitative (i.e., monitoring)
measurement [5] depending on the research goal. Research on fermentation monitoring
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with electronic nose techniques splits into submerged and solid-state fermentation. The
submerged fermentation is relevant to our research, which includes all fermentations in
the presence of excess water. Here, the electronic nose mainly uses fingerprints obtained
from odor [1]. Pinheiro et al. [6] investigated aroma production with an electronic nose for
monitoring the fermentation process by using the unspecific sensor signal corresponding to
ethanol concentration. Zhang et al. [7] investigated fermentation monitoring by alcoholic
quantification with the use of an electronic nose as well as near-infrared spectroscopy.
Several studies use gas sensor arrays to monitor fermentation, like Genzardi et al. [8]
and Oikonomou et al. [9]. Monitoring these process variables offline is a cost- and time-
consuming procedure. Grote et al. [10] used fluorescence spectroscopy to monitor the
sourdough fermentation process online. In the study by Bolarinwa et al. [11], the influence
of processing conditions on the levels of pH and TTA was determined in rice sourdough.
They developed a prediction model that could predict the response of pH and TTA. A
cheap and effective alternative can be monitored with a gas sensor array (GSA) system.
With increased performance and availability, the properties of GSA, like a fast assessment
of headspace and the ability for quantitative representation of gas mixtures, bode well
for monitoring tasks. This proved to be especially useful for microbial fermentation
monitoring with the analysis of exhaust gas [12]. The challenge of measuring pH during
sourdough fermentation is that it consists of liquid and solid parts that can influence
the electrode. A reliable result can only be achieved by diluting a sample. Therefore,
predicting critical measurement parameters like pH and acidity with a gas sensor array
(GSA) system can be a cheap and effective alternative. Electronic noses have been widely
established for the determination of the chemical composition in fermented foods and
beverage application [13,14]. Here, they are used for sensory evaluation, for example, by
identifying essential aroma compounds that are responsible for staling of bread [15] or
qualitative analysis to detect product adulteration like substituting corn and rice syrup
in honey [16]. However, due to their unspecificity, they need to improve their ability for
quantitative analysis. Using soft sensor models improves the effectiveness and possible
application areas for GSA systems. Many approaches to fermentation monitoring with
soft sensors, including data processing techniques, such as multiple least square support
vector machine, neural network, deep learning, fuzzy logic, and probabilistic latent variable
models, have been collected by Zhu et al. [17]. Viejo et al. [18] showed that with machine
learning, it was possible to build highly accurate and precise models to determine the type
of wheat and the volatile components of sourdough bread. Mei et al. [19] used a practical
soft sensor modeling approach that combines PCA and Gaussian process regression to
predict the biomass concentration in a fermentation better than a neural network and
support vector machine model.

The previous studies correlate the gas sensor output to certain process variables or
aroma characteristics. These studies visualize the kinetics of the associated target. This
paper presents a GSA system for evaluating the online prediction capability of the process
variables pH and TTA. Our approach aims to create prediction models that allow intrapola-
tion and, therefore, enable automating monitoring tasks for sourdough fermentation. This
should be achieved by feeding the models large amounts of data on different temperature
and flour type instances. Therefore, the prediction models should be ubiquitously usable
for sourdough fermentation. We carried out experiments with three different tempera-
tures and various types of flour to investigate the performance of our analysis approach.
Consequently, we provide the following contributions:

• A multivariate data analysis approach for the sourdough fermentation process.
• A correlation of features from the online GSA measurement values with offline mea-

surements of the process variables.
• Creation of prediction models with a parametric regression approach.

The remainder of this paper is structured as follows. In Section 2, we explain how
sourdough fermentation works, describe the gas sensor array system, and illustrate the
procedure for the experiments. Section 3 shows the obtained results. Finally, Section 4
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discusses the achieved results, and Section 5 puts them into context and shows further
possibilities.

2. Methods and Materials

First, Section 2.1 explains the sourdough fermentation process. After, we describe
the working principle and application of the gas sensor array system in Section 2.2. Last,
Section 2.3 illustrates the procedure for the experiments.

2.1. Sourdough Fermentation

Sourdough is a fermented dough with microorganisms, primarily lactic acid bacte-
ria and active or reactivated yeasts. The acidification of the dough is only obtained by
fermentation. During the fermentation, sugars are cleaved into carbon dioxide, which
is incorporated in the dough to increase its volume and small amounts of alcohol and
aroma components, which include lactic and acetic acid. Fresh sourdough is initiated by
mixing flour and water and leavening it at a warm temperature. After 12–24 h, spontaneous
fermentation leads to an acidic and alcoholic odor of the mixture. The TTA can provide
a simple estimate of the total acid content but cannot differentiate the acids within the
food sample. Whereas the TTA is a better predictor of acid’s impact on flavor than pH,
the pH can better describe how well microorganisms can grow in a food matrix due to
the dependence on hydronium ion concentration [1]. Hence, both measurements might be
relevant to control the fermentation process.

Besides the dough acidity, the dough yield (DY) is an essential parameter for charac-
terizing sourdoughs. It describes the dough consistency as the ratio between water and
flour in the dough. It is calculated with the following formula [20] (see Equation (1)):

DY =
(m( f lour)[g] + m(water)[g]) ∗ 100

m( f lour)[g]
(1)

The same DY in sourdoughs does not mean that they have the same consistency,
because different flours have different abilities to absorb water. Generally, sourdoughs
with a DY of 150–160 have a firm consistency, and doughs with a DY of 200 begin to
show a liquid consistency [20]. Also, the acidification rate increases with higher DY due
to the enhanced diffusion of components in the dough with increased fluidity. Faster
acidification of the dough means that the fermentation times are reduced as well [21]. In
this work, we investigated different doughs based on different flour types and different DY
characteristics.

2.2. Gas Sensor Array System

We measured online exhaust gas with a self-assembled measurement system [22].
Figure 1 shows the setup for the GSA system. The electricity for the GSA setup is provided
by a multifunction AC/DC-voltage source (1). The exhaust gas reaches the GSA setup
from the connection tube (2) of the fermenter. The exhaust gas is led to the gas chamber (3),
which is also connected to a gas flow meter (4) that receives oxygen from a gas flask that is
connected by a tube (5) to the setup. The signal measured in the gas chamber is transferred
to the Arduino mega 2560 (6) that forwards the signal to the Matlab script on the connected
laptop.
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Figure 1. Set-up of the gas sensor array (GSA) system: The GSA contains a DC/AC converter (1), a
tube connection from the oxygen gas cylinder (2), the gas measurement chamber (3), a flow meter (4),
a tube connection from the bioreactor (5), and the Arduino microcontroller (6).

Figure 2 provides a schematic view of the GSA system and how it is integrated into
the fermentation setup. The measurement system contains two main parts: the headspace
sampling system and the measurement chamber. The headspace sampling procedure
consisted of an automated sequence of internal operations. First, the headspace samples
of the fermenter are pumped past the measurement chamber for 10 s at a flow rate of
600 mL/min with a diaphragm pump (Schwarzer Precision) every five minutes. The
measurement chamber has a volume of 250 mL and contains a gas sensor array equipped
with commercially available metal oxide semiconductor (MOS) gas sensors (TGS 822, TGS
813, and MQ3). The chamber is flushed with pure oxygen to regenerate the sensors in
the next step. Due to the filling and flushing of the measurement chamber, peak-shaped
measurement signals are obtained every 5 min. The analog measurement signal was
converted to a digital signal by a microcontroller and forwarded to the computer interface,
where it was integrated and processed with a prepared script with Matlab.

Figure 2. Schematic diagram of the GSA system [22] and its integration into the fermentation setup.
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The gas sensor output is used as the source for the independent variables, while pH
and TTA are the dependent variables whose relation to the independent variable should be
predicted. We analyzed the raw signal from the gas sensor arrays (TGS 822, TGS 813, and
MQ3) in a Matlab script designated to extract the peak height and area of the peak in each
five-minute interval. From the feature extraction, six independent variables (i.e., 3 sensors *
2 features per sensor) were obtained. Figure 3 visualizes the feature extraction from the
raw data for the whole fermentation of F5. Three different methods for the determination
of the independent variables were used.

Figure 3. Peak height and area values from the feature extraction of MQ3 of F5.

The independent variables were inserted in the same procedure to implement a process
model. For this, the measurement values of the dependent and independent variables were
used in a process regression that correlates the inputs to supply parameters for predicting
the behavior of pH and acidity for their respective fermentation. The established parameters
were tied to the corresponding variables in the regression formula. With Excel’s solver
function, the parameters were minimized, expressing the correlation of the corresponding
variables. Every five-minute interval, a reference point was determined that would be
used for the error calculation. Due to fermentation runtimes of 10 h, an initial vector of
120 values was created for every fermentation. Each model estimation was evaluated
by calculating the sum of squared errors (SSE), the root mean square error (RMSE), and
the percentage error (% Error) of the RMSE that adjusted the error to the range of values.
Additionally, regression curves correlating the predicted values to the measured values
were created, and a coefficient of determination (R2) was assigned. Three different methods
for the determination of the independent variables were used and are explained separately
in the following:

1. The sensor features are filtered for the time corresponding to the taking of the of-
fline sample (dependent variable). The offline values for pH and acidity and the
corresponding GSA outputs were used as inputs for the regression equations. Two re-
gression equations were established, one for each feature the regression was based on.
For the sensor features, the feature values were adjusted by subtracting the baseline
value of the GSA measurement from the feature value. The regression equation for
the peak height and peak area regression are shown in Equations (2) and (3):

C = K1 + K2(PHTGS822 − BL) + K3(PHTGS813 − BL) + K4(PHMQ3 − BL) (2)

C = K5 + K6(PATGS822 − BL) + K7(PATGS813 − BL) + K8(PAMQ3 − BL) (3)
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with C as the predicted value for the dependent variable, Kn as the regression param-
eters, BL as the baseline, PH for peak height, and PA for peak area. After evaluating
the sensor features separately and combined in our calibrations, we decided to use
peak height because it delivered better results. We refer to this method as the sensor
signal method.

2. In the second method, the independent variables were determined using a PCA
script on the six extracted features. The features were transformed into two principal
components, with the values along the main axis as the output. This reduced the di-
mensionality of the six features as a collection of variables while maintaining the same
length of values in the data matrix. Analogous to the first approach, the regression
model was created using the transformed values of the two principal components as
independent variables. We refer to this method as the PCA regression method. The
regression equation is shown in Equation (4):

C = K9 + K10PC1 + K11PC2 (4)

3. For the third method, the raw data were split into datasets corresponding to the peak-
shaped five-minute intervals extracted from the Matlab script. The feature extraction
was not executed because enough data points per dataset had to remain for further
data analysis. In the next step, a PCA script continuously analyzes all intervals of one
fermentation to assign a score for each interval. The offline data were interpolated for
each interval to correspond to the eigenvalues. The eigenvalues were analogous to
the first approach as the independent variable for creating the process models. Only
one principal component was considered an input for the regression model, because
the first principal component had an explained variance over 99.5%. Therefore, the
second principal component would add noise to the process model. Still, the initial
vector for the model evaluation contains 120 values due to the transformation of the 5
min intervals. We refer to this method as the interval method. Equation (5) shows the
corresponding regression formula.

C = K1 + K2PC1 (5)

For certain combinations of process models, we performed a validation by inserting the
model parameters of one model into the regression equation of a validation set. The ability
of the model parameters to predict the behavior of another process model is evaluated
using SSE, RMSE, and the percentage model error.

2.3. Experiment Design

This section describes the procedure and the design of our experiments for analyzing
the performance of the gas sensor array system. The appendix provides an overview of the
used instruments and materials (cf. Appendix A).

The sourdough was prepared with three different flours: two rice flours—one of them
a white flour (Heimatsmühle) and the other a wholegrain flour (Heimatsmühle)—and a
white wheat flour (Rettenmaier Mühle). As a starter, the “Reinzucht-Sauerteig Reis” from
Böcker was used. The moisture content was about 58%, and the pH was about 3.7. It was
stored at 4 °C–6 °C.

A total of 16 fermentations, named F1 to F16, were carried out to provide a variance
of the fermentation conditions. The experimental design measured each flour twice at 28
°C and 32 °C with a DY of 200. For the validation, each flour was additionally measured
at 30 °C with a DY of 200. Table 1 shows the used flour and starter batch labels. Flour A
was measured thrice at 28 °C, because it was unclear whether enough data points were
available after the GSA system crashed. Table 2 shows a measurement scheme with the
temperature and flour combinations.
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Table 1. Labels for the used flours and starter batches.

Explanation

A Wholegrain rice flour (Heimatsmühle)
B White wheat flour (Rettenmeier Mühle)
C White rice flour (Heimatsmühle)
s1 Starter batch 1 (03/11/2021 –11/11/2021)
s2 Starter batch 2 (16/11/2021–23/11/2021)
s3 Starter batch 3 (24/11/2021–30/11/2021)
s4 Starter batch 4 (01/12/2021–06/12/2021)

Table 2. Experimental design for the fermentation measurements of temperature, flour type, and
starter batch at a starter amount of 15% and DY of 200.

Fermentation Temperature [°C] Flour Type Starter Batch

F1 28 A s1
F2 32 A s1
F3 30 A s1
F4 28 A s1
F5 32 A s2
F6 28 A s2
F7 32 B s2
F8 28 B s2
F9 32 B s3

F10 28 B s3
F11 30 B s3
F12 32 C s3
F13 28 C s3
F14 32 C s4
F15 28 C s4
F16 30 C s4

Figure 4 shows the experimental set-up of the sourdough fermentation. To heat the
stainless-steel fermenter, (1) a water bath (2) (Fisions) was connected to the water inlet and
outlet connections of the fermenter and set to the desired temperature. The outlets on the
side of the fermenter were sealed; the lowest outlet (3) was intended to take offline samples
of the sourdough. The lid to close the fermenter on the top side was connected with an
impeller mixer (4) (Hydro-Mec) and an engine (5). The mixer was set to the second speed
level. Two of three outlets were covered on the lid and one connected to the gas sensor
module (6) that leads the exhaust gas from the fermenter to the gas sensor.

At the beginning and every consecutive hour of each fermentation, the pH and the TTA
were measured offline. The pH and TTA were measured with a pH meter (Xylem) and pH
electrodes (VWR, Xylem). In the appendix, we describe the procedures for measuring pH
and TTA in detail (cf. Appendix B). These reliable manual measurements a using standard
procedure provide a reference for the calibration, using the values measured with the gas
sensor array system. To illustrate the fermentation process, we included Figure A1 with the
change in pH and TTA from F9 in the Appendix A.
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Figure 4. Experimental set-up of the sourdough fermentation: The set-up contains a stainless-steel
fermenter (1), a water bath (2), an offline sample outlet (3), an impeller mixer (4), an engine (5), and
the connection to the gas sensor module (6).

3. Results

In what follows, we present the results of the analysis of the measurements with the
gas sensor.

3.1. Process Model Evaluation

To analyze the process models’ accuracy, we measured the error evaluation for SSE,
RMSE, and RMSE percentage error. The results are shown in the order of signal sensor,
PCA regression, and interval methods.

pH Sensor Signal Method. Table 3 shows the results of the pH sensor signal method.
The features of peak height and peak area were carried out as separate process models. After
testing the combinations of the two features on several fermentations, this approach was
disregarded due to higher errors than the single-feature models. Except for fermentations
F14 and F15 of the pH sensor signal method, each percentage error stayed under 10%.
Comparing the peak height with the peak area model showed that the peak height model
had a lower error rate. Due to the adjustment of the percentage error to the range of values,
a comparison of the pH and TTA model errors was possible. Although the TTA model does
not have outliers like fermentations F14 and F15 from the pH model, its average error is
higher than the pH models.

Table 3. Calculated SSE, RMSE, and percentage model errors of the pH sensor signal method for
fermentations F1 to F16.

Fermentation

pH

Peak Height Peak Area

SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

F1 0.02 0.04 2.2 0.06 0.08 3.1
F2 0.04 0.07 3.3 0.06 0.08 3.8
F3 0.07 0.08 4.0 0.04 0.06 2.5
F4 0.11 0.09 4.7 0.24 0.14 7.1
F5 0.06 0.08 4.0 0.22 0.15 7.4
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Table 3. Cont.

Fermentation

pH

Peak Height Peak Area

SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

F6 0.02 0.04 1.9 0.03 0.06 2.8
F7 0.16 0.12 6.3 0.19 0.14 6.9
F8 0.05 0.07 3.7 0.03 0.06 2.9
F9 0.04 0.07 3.3 0.06 0.08 3.8
F10 0.03 0.05 2.5 0.01 0.03 1.4
F11 0.10 0.1 5.1 0.27 0.17 8.3
F12 0.04 0.07 2.6 0.20 0.14 7.1
F13 0.06 0.08 4.0 0.08 0.09 4.4
F14 0.11 0.1 5.2 0.60 0.25 12
F15 0.10 0.1 4.9 0.45 0.21 11
F16 0.03 0.05 2.6 0.52 0.23 9.2

TTA

F1 0.61 0.25 3.5 1.2 0.35 7.7
F2 5.5 0.74 7.4 3.8 0.62 6.2
F3 2.44 0.47 5.9 2.84 0.53 5.3
F4 1.77 0.38 6.4 2.16 0.42 7.1
F5 0.98 0.31 3.1 1.54 0.39 3.9
F6 0.48 0.21 2.8 1.16 0.34 4.5
F7 1.53 0.39 4.3 2.71 0.52 5.8
F8 0.69 0.26 3.8 3.09 0.56 7.9
F9 0.66 0.26 2.9 1.25 0.35 3.9
F10 1.11 0.33 5.1 1.68 0.41 6.3
F11 3.43 0.59 6.5 4.07 0.64 7.1
F12 0.67 0.26 5.7 1.54 0.39 6.0
F13 1.89 0.43 8.7 2.18 0.47 9.3
F14 0.3 0.17 2.7 1.54 0.39 6.0
F15 0.57 0.24 5.3 1.53 0.39 8.7
F16 0.32 0.18 3.6 1.15 0.34 7.5

PCA Regression Method. The process models for the PCA regression method were
carried out by grouping the 28 °C and 32 °C fermentations of one flour type in their
temperature and combining them. The grouping of the fermentations was decided after
detecting that the error of the grouped data resulted in lower error rates than the single-
fermentation models. The grouped fermentations are titled in Table 4 as the abbreviations
for the flour type (A, B, and C) and temperature, in which 28 °C and 32 °C contain the
two respective fermentations. The combination is indicated as the abbreviation with an
asterisk (*), and the two fermentations from each temperature are used in parentheses. The
results of the error calculation for the PCA regression model show mostly errors under 10%
with few exceptions, namely the temperature combination of A with a percentage error of
16% for TTA and the 32 °C grouped data from B with a percentage error of 10% for TTA.
The last outlier was the temperature combination of C with a percentage error of 12% for
pH.

Interval Method. The last method to be evaluated for the model’s error is the interval
method. Table 5 presents the model errors for fermentations F1 to F16. The interval method
had three major percentage model errors in F7 and F11, with errors over 15%. Model errors
between 10% and 15% were detected in F2, F3, F7, F12, F14, and F16. Every model with
a major pH or TTA error also had at least 10% to 15% in the other criteria. This was not
the case if a model had an error between 10% and 15%. The grouped fermentations for the
interval method in Table 6 are titled in the same way as the ones from the PCA regression
method in Table 4.
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Table 4. Calculated SSE, RMSE, and percentage model errors of the PCA regression method for the
grouped 28 °C, 32 °C, and combined fermentations (assigned with the asterisk) from one flour type.

Fermentation

pH TTA

SSE (-) RMSE (-) % Error SSE
(mL/10 g)

RMSE
(mL/10 g) % Error

A 28 °C 0.16 0.08 4.2 5.68 0.51 7.3
A 32 °C 0.17 0.09 4.4 4.43 0.45 6.4

A * (F2/F6) 0.5 0.15 7.5 26.13 1.09 16
B 28 °C 0.13 0.08 3.9 6.03 0.52 7.5
B 32 °C 0.29 0.12 5.8 10.84 0.7 10

B *
(F7/F10) 0.38 0.13 6.6 6.32 0.54 7.7

C 28 °C 0.16 0.08 4.2 5.68 0.51 7.3
C 32 °C 0.17 0.09 4.4 4.43 0.45 6.4

C *
(F13/F16) 1.21 0.23 12 1.33 0.25 3.5

Table 5. Calculated SSE, RMSE, and percentage model errors of the interval method for fermentations
F1 to F16.

Fermentation
pH TTA

SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

F1 2.48 0.14 7.1 54.67 0.67 9.6
F2 3.46 0.17 8.4 62.27 0.71 10
F3 3.40 0.17 8.4 93.91 0.88 13
F4 2.14 0.12 6.1 60.77 0.65 9.2
F5 2.60 0.15 7.3 31.69 0.51 7.3
F6 3.98 0.18 9.0 48.02 0.63 9.0
F7 13.01 0.33 16 104.66 0.93 13
F8 2.55 0.14 7.2 17.65 0.38 5.4
F9 1.93 0.13 6.3 58.54 0.69 9.9
F10 1.62 0.12 5.8 6.74 0.24 3.4
F11 22.16 0.43 21 214.30 1.33 19
F12 5.18 0.21 10 53.77 0.66 9.5
F13 2.33 0.14 6.9 39.41 0.57 8.1
F14 5.00 0.21 11 16.42 0.38 5.5
F15 3.02 0.16 7.9 15.41 0.36 5.1
F16 5.51 0.21 11 13.45 0.33 4.7

Table 6. Calculated SSE, RMSE, and percentage model errors of the interval method for the grouped
28 °C and 32 °C fermentations from one flour type.

Fermentation
pH TTA

SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

A 28 °C 7.20 0.17 8.6 152.73 0.79 11
A 32 °C 10.24 0.21 10 120.76 0.70 10
B 28 °C 8.24 0.18 9.2 110.11 0.67 9.6
B 32 °C 25.68 0.32 16 502.25 1.43 21
C 28 °C 34.48 0.39 20 280,00 1.12 16
C 32 °C 15.96 0.26 13 170.31 0.85 12

The grouped temperature models showed a higher error than the single-fermentation
models. Especially, the 32 °C model of flour type B and the 28 °C model of flour type C had
percentage errors of over 15%.
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3.2. Coefficient of Determination (R2)

The determination of the R2 was only possible for the sensor signal models, because
the integration of the PCA in the modulation methods caused a higher scattering of the
predicted values. The determined R2 values for the sensor signal models of fermentation
F1 to F16 are shown in Table 7.

Table 7. Results for R2 from the pH and TTA sensor signal method for fermentations F1 to F16.

Fermentation

R2 [-]

pH TTA

Peak Height Peak Area Peak Height Peak Area

F1 0.995 0.986 0.991 0.982
F2 0.993 0.990 0.952 0.969
F3 0.984 0.971 0.990 0.967
F4 0.978 0.952 0.972 0.965
F5 0.987 0.956 0.993 0.989
F6 0.997 0.993 0.994 0.985
F7 0.969 0.961 0.988 0.978
F8 0.987 0.992 0.988 0.947
F9 0.991 0.989 0.994 0.989

F10 0.993 0.998 0.98 0.969
F11 0.977 0.94 0.967 0.961
F12 0.988 0.944 0.988 0.972
F13 0.981 0.976 0.943 0.934
F14 0.969 0.827 0.994 0.971
F15 0.969 0.854 0.98 0.947
F16 0.993 0.848 0.991 0.969

The R2 values for the peak height models were generally higher than the ones for
the peak area models. The comparison of pH and TTA models showed that none had
consistently better values of R2.

3.3. Validation of the Models

The validation was carried out by inserting the model parameters of one model in
the regression equation of another model. For example, F4 with F8 means that the model
parameters from F8 were inserted in the regression equation of F4. Tables 8–10 show
the SSE, RMSE, and RMSE percentage model error of the validation models for the three
different model methods.

pH Sensor Signal Method. The validations for the sensor signal method were only
carried out for the peak height feature due to a lower error rate than the peak area feature.
To evaluate if the models can describe the process within their flour type and temperature,
the model parameters of these fermentations were inserted into each other. The validations
showed a high percentage error, except for the model parameters of F4 and F10. In
comparison, the percentage errors for TTA are lower than for pH.

PCA Regression Method. The validations for the PCA regression method were carried
out by inserting the model parameters of the grouped temperature models into the 30°C
calibration of their respective flour type.

The validations for the PCA regression method had a low error rate than the valida-
tions of the sensor signal method within their temperature. The percentage error is lower
in the validations for the pH than it is for the TTA validations.
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Table 8. Results of SSE, RMSE, and percentage error for the validations of the sensor signal method
from the fermentations of each flour type with the same temperature.

Validations
pH TTA

SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

A 32 °C
F5 with F2 2.30 0.48 25 24.16 1.55 15
F2 with F5 2.80 0.53 26 65.61 2.56 26

A 28 °C
F4 with F1 1.35 0.34 17 18.14 1.23 20
F1 with F4 0.17 0.13 6.5 3.43 0.59 8.4

B 32 °C
F9 with F7 0.88 0.30 14 22.91 1.51 17
F7 with F9 1.75 0.42 21 14.59 1.21 13

B 28 °C
F10 with F8 0.59 0.24 12 13.53 1.16 18
F8 with F10 0.40 0.20 9.9 4.13 0.64 9.2

C 32 °C
F14 with F12 1.09 0.33 16 13.18 1.15 14
F12 with F14 4.67 0.68 27 4.12 0.64 14

C 28 °C
F13 1.17 0.34 17 5.86 0.77 17
F15 3.46 0.59 29 8.65 0.93 19

Table 9. SSE, RMSE, and percentage error results for validating the PCA regression method from the
grouped temperature models in the 30 °C validation set (combined fermentations assigned with the
asterisk) from one flour type).

pH TTA
SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

Validation of A 30 °C with
A 28 °C 0.19 0.13 6.5 7.13 0.8 10
A 32 °C 0.75 0.26 13 25.35 1.52 19

A * (F2/F6) 0.5 0.15 7.5 8.75 0.89 11

Validation of B 30 °C with
B 28 °C 1.17 0.33 16 28.71 1.62 20
B 32 °C 0.38 0.19 9.3 1.84 0.41 5.1

B * (F7/F10) 0.76 0.26 13 29.27 1.63 20

Validation of C 30 °C with
C 28 °C 0.19 0.13 6.5 7.13 0.8 10
C 32 °C 0.68 0.25 12 9.98 0.95 12

C * (F13/F16) 0.8 0.27 13 2.73 0.5 6.2

Interval Method. The validations for the interval method were based on examin-
ing different combinations between the grouped temperatures and the 30 °C validation
temperature. The interval method showed a high scattering effect of the predicted values
compared with the other methods. The model parameters had a high range of −200 to 200,
which made a precise estimation of the validation sets difficult. Further validations were
disregarded due to their high error rate.
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Table 10. Results of the SSE, RMSE, and percentage error for the validation of the interval method.

Validation
pH TTA

SSE (-) RMSE (-) % Error SSE (mL/10 g) RMSE (mL/10 g) % Error

A 30 °C with A 32 °C 31.01 0.50 25 927.55 2.76 39
C 32 °C with A 32 °C 31.40 0.37 18 7869.90 5.79 83
B 30 °C with B 28 °C 29.66 0.49 25 433.64 1.89 27
B 28 °C with C 28 °C 52.66 0.46 23 674.81 1.66 24
C 30 °C with C 28 °C 13.01 0.33 16 86.39 0.84 12

4. Discussion

The results of the measurements using our evaluation settings indicate that for both pH
and TTA, the best validation predictions were obtained by the PCA regression method. We
interpret and discuss the results in detail in this section. Further, we explain the identified
threats to validity.

4.1. Offline Data of Sourdough Fermentation

We performed offline measurements in the laboratory to confirm the results measured
with the GSA system. The pH and TTA values behaved mostly as expected. For the pH
values, each fermentation, except for F4, F12, and F14, had a sigmoid downward trend
opposed to the growth of the microorganisms. The other ones showed a more parabolic
behavior. This could have resulted from a faster or slower accommodation of the starter
microorganisms in these fermentations. The TTA values showed an almost linear increase.
The different flour types and temperatures influenced the fermentation as supposed. A
higher temperature resulted in a faster process regarding pH and TTA. The starting pH
of the white flours was lower than the wholegrain flour, while the starting TTA of the
wholegrain flour was higher than the white flours. This could be explained by the degree
of grinding and the state of the compounds in the flours. From the high degree of grinding,
the white flours exhibit damaged starch molecules. These release more directly fermentable
substrates that contribute to faster pH lowering. On the other hand, wholegrain flour
still contained more protein and enzymes that exhibit a buffering effect [23]. Bolarinwa et
al. [11] investigated the influence of temperature and fermentation time on pH and TTA
by creating a prediction model using response surface methodology. In comparison, we
varied temperature and flour types to increase the variance for the calibration input and
then examined the prediction performance for our target variables. The R2 for their model
is 0.88 for pH and 0.887 for TTA, while our models range from 0.94 to 0.998 for pH and
0.947 to 0.994 for TTA. Other evaluation criteria were not stated and cannot be compared.

The HPLC results contribute insight into the metabolic processes during the fermenta-
tions. Each flour type had a different composition of sugars (glucose and maltose), but the
microorganisms mainly converted glucose. This was visible by examining the change in
concentrations of maltose between the wholegrain rice flour and the wheat flour. The whole-
grain flour showed a low maltose concentration and was still not completely converted.
Conversely, wheat flour showed a high concentration of maltose, but its concentration did
not change drastically. In contrast, the concentration of glucose increased and decreased
during the fermentation. The assumption that the content of organic acids was higher
in wholegrain flour than in white flour was confirmed by the HPLC. Due to the lower
grinding of the flour, more enzymes were available to convert a broader range of substrates.
The results follow this trend.

4.2. Process Models

The process models for the sensor signal method had an adjusted percentage error of
less than 10% for all models of the fermentations, except the ones for F14 and F15 of the
peak area. They had a high coefficient of determination for predicting their fermentation
but showed high errors for the validation with their paired temperature of the same flour
type. The PCA regression method had low errors for the grouped temperature models
and, compared with the sensor signal method, lower error values for the validations. The
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interval method contributed mixed error rates for the individual fermentation models and
a percentage error of over 15%, except for one combination for the validations that had
been carried out.

The aim for the validation errors was to be less than 10%; these values were mainly not
reached. The best results for the validation models were achieved with the PCA regression
method. Several possibilities could cause the validation of the methods not to satisfy the
error requirements for the broad range of process models. The first reason is tied to the
sensor signal and PCA regression method, because the interval method did not use feature
extraction. The feature extraction of the peak area included a certain amount of noise.
By adjusting the script further on the steps that capture the interval, less noise could be
incorporated in the peak area feature. A second reason can be found in the GSA system.
The already mentioned system crashes during the fermentations led to data gaps in the gas
sensor online data. These gaps were carried over to later operations like feature extraction
or PCA. There, the predicted values deviate noticeably after the data gap. This, in turn,
impacts the error rate of the process model. The third reason is the high scattering of the
PCA values omitted from the interval method. In this method, scores were assigned for
every five-minute interval. Still, due to the similarity of the interval inputs from the raw
data, the PCA contributed slight variance inside the range of the intervals. It must also be
considered that the influence of the fermentation temperature changes the composition of
the gas phase from the exhaust gas and, therefore, the signal response of the sensors. This
could affect the prediction ability of models that combine data from different fermentation
temperatures. To ensure the ability to monitor the process online, the PCA can be integrated
into the data collection during measurement. In this work, the methods were evaluated on
the measured data, but with a verified method, the data can be processed online without
time delay.

Many studies use soft sensor models in fermentation monitoring. Mei et al. [19] pro-
posed a multimodel method using Gaussian process regression and PCA to construct a
soft sensor for fermentation processes to estimate biomass concentration. Similar to our ap-
proach, they used PCA to extract features and then integrated them into regression models.
While our approach extracted the principal components to implement different methods
into the parametric regression models, their approach calculates weights from submodel
variance to combine into a final prediction model. We combined a data-driven approach
with local models for the best prediction performance. But there are no approaches to
building soft-sensing (pH/TTA) monitoring models for sourdough fermentation, so we
cannot compare our results directly.

4.3. Threats to Validity

One limitation is the applicability of the results regarding other flour types and their
influence on the final product. With supporting measurements, e.g., rheology for the
characterization of the sourdough, it would become apparent if the models are applicable
to sourdoughs from different flour types. Similarly, sensory evaluation has yet to be carried
out to verify if products from the monitored sourdough would satisfy the requirements of
consumers. These steps can be implemented to continue this work to ensure the relevance
of the developed models. To justify replacing the methods used to measure pH and TTA
with our models, we need to compare the estimated errors of traditional methods (i.e., using
a pH electrode to measure the pH and TTA) with the errors that occur in our models. While
the error of the pH measurement device is supposed to have an accuracy of ±0.1 pH units,
it is still influenced by several factors like fermentation conditions, electrode calibration,
preparation, and withdrawal of the samples. An estimated error of 5% for our model,
which specific validations achieved, can be achieved by tuning the method in accuracy
with more input data and a streamlined method. This would allow our method to be in
the same margin as the traditional method while being less susceptible to errors occurring
during the measurement. The model error at 5% would still be higher than the error of
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the traditional method. However, the increase in accuracy by tuning cannot be estimated
safely, which can result in higher or lower degrees of accuracy improvement.

To specify, the results of the process models could have been improved by carrying
out more fermentations with the same substrate and temperature to build a sufficient
data foundation for the model creation and further data analysis operations. In this vein,
using wheat flour instead of a third rice flour was too ambitious. An experimental plan
with a third rice flour or more fermentations with the same substrates and temperatures
might have led to more balanced and coherent datasets. With more extensive training
and validation datasets, there are opportunities to use machine learning operations like
neural networks that improve the prediction capability of the GSA. A reordering of the
measurement data can improve the robustness of the models by making the features
invariant to temperature and flour type. Using neural networks with GSA already proved
successful in the contribution from Omatu and Yano [24]. By applying neural networks
on time series data from GSA, they achieved a classification rate of 89% to 96% for tea and
coffee odors.

One important factor to consider is the temperature drift caused by the temperature
change in the environment. This greatly affects the precision and measurement stability
of the gas sensors. As a solution, the approach by Xu et al. [25] can be used in future
experiments. They proposed a compensation training method based on random forest,
which improved the accuracy of the GSA by about 1%.

The use of the GSA system to predict process variables is promising, and with the
research and implementation of the correct methods and tools, it can be a practical and
easily implementable sensor. A possible idea for the future use of the GSA system would
be to measure fermentations at the same process conditions for different time durations.
With the help of a forecast algorithm, parameters can be adjusted, and an automated
signal loop could be established. Tudu et al. [26] showed that a forecasting approach for
the peak prediction of a black tea fermentation process is possible. They used a similar
GSA system set-up to detect a peak representing the optimal fermentation time. It will be
more challenging to align the total time series data to the optimization goal than to find
a specific optimization peak. Still, with the variety of tools in the machine learning field,
it is reasonable to accomplish. Using the GSA system could also deliver enough data for
modeling the fermentation process as a digital twin [27].

5. Conclusions

For ensuring high-quality sourdough, monitoring the fermentation is essential. Rele-
vant characteristics include pH and the degree of acidity measured as TTA. A time- and
cost-intensive offline measurement of these variables can be avoided by utilizing online
gas measurements in prediction models. In this paper, we describe a gas sensor array
(GSA) system that can monitor the fermentation process of sourdough online. We used
the obtained data to correlate the gas data with offline measurement values of the process
variables. Three methods were tested to use the extracted features from GSA to create the
prediction models.

The results indicate that the online measurement of exhaust gas from sourdough
fermentation with gas sensor arrays can be a cheap and efficient application to predict pH
and TTA. The work also showed that the data must be processed thoroughly and with a
suitable method to achieve proper prediction performance.

In comparison with other approaches of fermentation monitoring, this approach
needs just a simple and cheap set-up. The analysis of the data is conducted during the
fermentation in real time. Measuring the variables (especially the pH values) directly might
result in initially lower errors of measurements. Further, these approaches require less
training data and, hence, less fermentations for generating training data have to be carried
out. Moreover, the advantage of our approach is that the error can be decreased by training,
and a noninvasive online fermentation monitoring model can be implemented.
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The further steps to continue this work first include an analysis of a prototype that
applies the PCA with real-time data. As the scope of this work was to identify suitable anal-
ysis approaches, this has not yet been carried out. Second, we plan to increase fermentation
measurements to include machine learning operations in the model development reliably
and add supporting measurements to characterize sourdough from different sources and at
specific process parameters. Furthermore, a sensory evaluation must be added to guarantee
the quality of bread products from the monitored sourdough.
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Abbreviations
The following abbreviations are used in this manuscript:

DY Dough yield
GSA Gas sensor array
HPLC High-performance liquid chromatography
NaOH Sodium hydroxide
PCA Principal component analysis
R2 Coefficient of determination
RMSE Root mean square error
TTA Total titratable acids

Appendix A. Used Materials and Equipment

The instruments and materials used during the experiments are listed in the following
Tables: A1 and A2. In addition to the materials, the table also contains the trade name and
the manufacturer. The chemicals used are shown analogously in Table A3. Additionally,
the used software is presented in Table A4.
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Table A1. List of used instruments.

Instrument Trade Name Manufacturer

Balance Electronic Balance UW4200H (accuracy: 0.01 g) Shimadzu (Shimadzu Corporation, Kyoto, Japan)
Balance M-power (accuracy: 0.01 g) Sartorius (Sartorius AG, Göttingen, Germany)

Centrifuge Mega Star 600R VWR (VWR International LLC, Radnor, PA, USA)
Computer gas sensor ThinkPad Lenovo (Lenovo Group Limited, Hongkong, China)

Fermenter Self-made
University of Hannover (Workshop of the Institute of
Technical Chemistry of the University of Hannover,

Hannover, Germany)

Freezer (−28 °C) GN 2556-20C/001 Liebherr (Liebherr-Hausgeräte GmbH,
Ochenshausen, Germany)

Fridge VWR
Gas flow meter Red-y compact series-2 Vögtlin (Vögtlin Instruments GmbH, Muttenz, Switzerland)

HPLC autosampler ProStar 410 AutoSampler Varian (Varian Inc., Palo Alto, CA, USA (now: Agilent
Technologies Inc., Santa Clara, CA, USA))

HPLC column RezexTM ROA-Organic Acid H+ (8 %) Phenomenex (Phenomenex Inc., Aschaffenburg, Germany)
HPLC column thermostat ERC (ERC GmbH, Riemerling, Germany)

HPLC guard column SecurityGuard Cartridge System Phenomenex
HPLC solvent Delivery module ProStar Varian

HPLC vacuum degasser Online degaser Duratec (Duratec Analysentechnik GmbH,
Hockenheim, Germany)

Magnetic stirrer IKAmag RCT IKA (IKA®-Werke GmbH & Co. KG), Staufen, Germany)
Microcontroller Arduino Nano Arduino (Arduino LLC, Somerville, MA, USA)
Microcontroller Arduino Mega Arduino

pH electrode SenTix Sp Xylem (Xylem Analytics Germany Sales GmbH & Co. KG,
Weilheim, Germany)

pH electrode SJ 114 VWR
pH meter inoLab® pH 730 Xylem

Precision balance Precisa 120A (accuracy: 0.1 mg) Precisa (Precisa Gravimetrics AG, Dietikon, Switzerland)

Table A1. Cont.

Instrument Trade Name Manufacturer

Stirrer engine Pabst & Fischer (Pabst & Fischer Elektromotoren e.K, Leonberg, Germany)
Stirrer gear box B311A-N06SN1B3 Hydro-Mec (Hydro-Mec S.P.A, Sovizzo, Italy)

Ultrapure water system PURELAB Classic Elga (Elga LabWater/Veolia Water Technologies, Aubervilliers, France)
Vacuum pump PC 3001 Vario select Vacuubrand (Vacuubrand GmbH & Co. KG, Wertheim, Germany)
Vortex shaker VF 2 IKA

Water bath Elmasonic S 100 H Elma (Elma Schmidbauer GmbH, Singen, Germany)
Water bath (Fermenter) Haake D8-G Thermostat Water Bath Fisons (Fisons plc, Loughborough, UK)
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Table A2. List of used materials.

Material Trade Name Manufacturer

Beaker 25 mL Schott Duran DWK (DWK Life Sciences GmbH, Wertheim, Germany)
Beaker 150 mL Pyrex® France Corning (Corning Inc., Corning, NY, US)
Bulkhead bottle Schott Duran DWK

Burette 50 mL Hirschmann® Burette Hirschmann (Hirschmann Laborgeräte GmbH & Co. KG,
Eberstadt, Germany)

Can for ultrapure water Kautex (Kautex Maschinenbau GmbH, Bonn, Germany)
Cap for HPLC vials PP Screw Cap 9 mm VWR

Dough scraper Teigschaber Rot Rösle (Rösle GmbH & Co. KG, Marktoberdorf, Germany)
Erlenmeyer flask 100 mL Pyrex® France Corning

Filter for HPLC Syringes (PP, 0.45 µm) Spritzenfilter Müller (Chromatographie Handel Müller GmbH,
Fridolfing, Germany)

Folded filter (Diameter: 27 cm) MN 615¼ Macherey-Nagel (Macherey-Nagel GmbH & Co. KG,
Düren, Germany)

Glass funnel
Glass stick

Hexagonal wrench
HPLC vials VWR Cuvettes PMMA VWR

Lint-free wipes KimtechTM Science Delicate Task Wipes Kimberly-Clark (Kimberly-Clark Professional,
Koblenz, Germany)

Magnetic stirring bar
Magnetic stirring bar retriever

Measuring cup 1 L BrandTM Messbecher Brand (Brand GmbH & Co. KG, Wertheim, Germany)
Pipette 5 mL Eppendorf Research plus Eppendorf (Eppendorf AG, Hamburg, Germany)

Pipette tip 1 mL Plastibrand® Brand
Pipette tip 5 mL epT.I.P.S.® 0.1–5 mL Eppendorf

Plastic bowl
Plug of Fermenter port
Safe-lock tubes 2 mL Eppendorf Tubes® Eppendorf

Spatula
Spoon

Syringe HPLC 1 mL HENKE-JECT® U-100 Insulin Henke-Sass Wolf (Henke-Sass Wolf GmbH,
Tuttlingen, Germany)

Vacuum filter NylafloTM Pall (Pall corporation, Port Washington, NY, US)
Volumetric flask 1 L Hirschmann

Watchglass

Table A3. List of used chemicals and materials.

Chemical/Material Trade Name Manufacturer

D(+)-glucose anhydrous AnalaR NORMAPUR VWR
D(+)-maltose monohydrate Fluka (Honeywell International Inc., Morristown, NJ, USA)

Ethanol LiChrosolv® Ethanol Merck (Merck KGaA, Darmstadt, Germany)
Glycerol 86 %

L(+)-lithium lactate Merck
Perchloric acid 70 % Perchloric Acid Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Steinheim, Germany)
Potassium chloride Normapur VWR

Wholegrain rice flour Bio Reismehl Vollkorn Heimatsmühle (Heimatsmühle GmbH & Co. KG, Aaalen, Germany)
White rice flour Biokorn Reismehl weiß Heimatsmühle

Wheat flour Weizenmehl weiß Rettenmeier Mühle (Rettenmeier Mühle GmbH, Horb am Neckar,
Germany)

Sodium acetate Carl Roth
Sodium hydroxide EMPLURA ® Sodium Hydroxide Pellets Merck
Sourdough starter Reinzucht-Sauerteig-Reis Böcker (Ernst Böcker GmbH & Co. KG, Minden, Germany)
Sulfuric acid 25% EMSURE® Sulfuric Acid 25% Merck
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Table A4. List of used programs and software.

Software Trade Name Manufacturer

Integrated development environment software Pycharm JetBrains (JetBrains s.r.o., Prague, Czech
Republic)

Interpreted general-purpose programming language Python (Version 3.9) for Windows
Python Software Foundation (Python

Software Foundation, Wilmington, Delaware,
USA)

HPLC software Galaxie Chromatography Data System Varian

Numerical-computing -based programming language Matlab2021a (Version 9.7) for Windows MathWorks (The MathWorks Inc., Natick,
MA, USA)

Spreadsheet software Microsoft Excel Microsoft (Microsoft Corporation, Redmond,
WA, USA)

System software notebook Windows 11 Microsoft

Figure A1. pH and TTA change during fermentation on the example of F9.

Appendix B. Procedures for Manual Measurement of pH and TTA

This section describes the procedures for manual measurement of pH and TTA.

Appendix B.1. Determination of pH

From the samples during fermentation, 10 g “±” 0.1 g was poured into a beaker
(Corning) and filled to 100 g with distilled water. Then, it was diluted 1:10 with distilled
water on a scale (Shimadzu) until it reached 100 g. The diluted sample was continuously
mixed using a magnetic stirrer (IKA). The pH was measured with a pH meter (Xylem)
and a pH electrode (VWR). After the pH stabilized, it was noted. The pH electrode was
calibrated before the laboratory experiments began and was checked before each use with
standard solutions of pH 4, pH 7, and pH 10. After the 11th fermentation, deviations from
the standard solution were consistently higher than “±” 0.1, and a new calibration had
no effect. The pH electrode was changed to another model (Xylem) for the remaining
experiments.

Appendix B.2. Determination of TTA

A solution of 0.1 M NaOH was prepared by dissolving 4 g of sodium hydroxide
(NaOH) (Merck) in distilled water in a 1 L volumetric flask (Hirschmann). The prepared
NaOH solution was filled into a burette (Hirschmann), and the diluted sample mixture was
placed under the valve of the burette. The sample mixture was continuously stirred, and
its pH was measured with a pH electrode (Xylem). Drops of NaOH solution were added
to the mixture until a pH of 8.5 was reached. After five minutes, the pH recovered due to
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the buffering capacity of the sourdough. The sample was titrated again after 5 min and
10 min from the first titration. The amount of used NaOH in mL was noted as TTA in mL
of 0.1 M NaOH per 10 g of sourdough. To simplify the measurement, the end volume of the
burette was noted after each measurement to continue for the next one. By subtracting the
old end volume from the new end volume, the TTA could be determined without refilling
the burette for each measurement.
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