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Abstract 

Alternatives to animal-based products are becoming more relevant. Most of those products rely at 

some stage on a structuring process; hence researchers are developing techniques to measure 

the goodness of the structured material. Conventionally, a typical sensory study or texture analysis 

by measuring deformation forces would be applied to test the produced material for its texture. 

However, meat alternatives and meat differ in more points than just the texture, making it hard to 

extract the isolated texture impression. To objectively obtain qualitative and quantitative 

differences between different food structures, evaluation of oral processing features is an 

upcoming technology which qualifies as promising addon to existing technologies. The kinematic 

data of the jaw and exerted forces regarding muscle activities are recorded during mastication. 

Resulting datasets are high in dimensionality, covering thousands of individual chews described 

by often more than ten features. Evaluating such a dataset could benefit from applying 

computational evaluation strategies designed for large datasets, such as machine learning and 

neural networks. The aim of this work was to assess the performance of machine learning 

algorithms such as Support Vector Machines and Artificial Neural Networks or ensemble learning 

algorithms like Extra Trees Classifier or Extreme Gradient Boosting. We evaluated different pre-

processing techniques and various machine algorithms for learning models with regard to their 

performance measured with established benchmark values (Accuracy, Area under Receiver-

Operating Curve score, F1 score, precision-recall Curve, Matthews Correlation Coefficient 

(MCC)). Results show remarkable performance of classification of each single chew between 

isotropic and anisotropic material (MCC up to 0.966). According to the feature importance, the 

lateral jaw movement was the most important feature for classification; however, all features were 

necessary for an optimal learning process. 

Keywords: Machine Learning, Food Structure, Oral Processing, Mastication Physics, Data 

Science 
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Abbreviations:  

AdaBoost - Adaptive Boosting Classifier 

ANN - Artificial Neural Network 

AUC - Area Under Curve 

AUROC - Area Under Receiver-Operating Curve 

DT - Decision Tree 

GNB - Gaussian naïve Bayes Classifier 

GradBoost - Gradient Boosting Classifier 

kNN - k-Nearest Neighbor  

LR - Logistic Regression  

MCC - Matthews Correlation Coefficient 

PCA - Principal Component Analysis 

RF - Random Forest 

SMOTE - Synthetic Minority Oversampling Technique  

SVM - Support Vector Machine 

XGBoost - Extreme Gradient Boosting Classifier 
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Introduction 

Food structure is critical in moving food production toward a CO2-neutral range. As meat 

production presents one of the components of food production that emits the most greenhouse 

gases, companies, researchers, and consumers have a common goal: to structure alternative 

proteins from renewable and climate-neutral sources, with the aim to produce products with the 

well-accepted and sought-after sensory properties of meat (Dekkers, Boom, & van der Goot, 2018; 

Grossmann & Weiss, 2021; Ilic, Van Den Berg, & Oosterlinck, 2021). 

Besides aromatic, taste, and visual sensory aspects, understanding the structure-texture 

dependency of meat is part of this. It is known that muscle has an anisotropic structure that 

extends over broad length scales, from the nanoscale to the macroscale, with many hierarchical 

levels (Biga et al., 2019; Listrat et al., 2016). In contrast to sensory aspects, which can be easier 

copied with aroma substitutes, colorants, and spices, understanding how this structure determines 

how a food product is perceived is unclear. Hence, it cannot be easily copied yet, and further 

analysis is required (Oppen, Grossmann, & Weiss, 2022). 

Therefore, food science researchers use medical science knowledge and try to find connections 

between food structure and mastication physics. This interdisciplinary field is called food oral 

processing (J. Chen, 2009; Devezeaux De Lavergne, Young, Engmann, & Hartmann, 2021; 

Foegeding, Vinyard, Essick, Guest, & Campbell, 2015). In this field, several approaches exist to 

analyze mastication characteristics from the first bite to swallowing and beyond. For example, 

bolus particle sizes of meat and meat analogues have been collected (Ilić, Djekic, Tomasevic, 

Oosterlinck, & Berg, 2022), or jaw movements and muscle activities during chewing on different 

gel-like structures have been recorded (Koç et al., 2014). The common approach to evaluate the 

dynamic data of jaw movement and muscle activities is to calculate mean values over the whole 

sequence of mastication or for certain stages of the sequence (Braxton, Dauchel, & Brown, 1996; 

Brown et al., 1996; Çakir et al., 2012; Kohyama & Mioche, 2004; Le Révérend, Saucy, Moser, & 
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Loret, 2016). Conducting an ANOVA on the calculated mean values would in theory enable to 

group the variables into homogenous subgroups. Yet, even large mechanical and rheological 

differences did not consistently lead to significant differences in the evaluated oral processing 

features (Melito, Daubert, & Foegeding, 2013). For example, Melito et al. (2013) investigated three 

types of cheese (Mozzarella, Cheddar and American) on their oral processing behavior calculating 

differences between the mean values, but none of the features could identify significant 

differences between all three cheese products. 

Recently, work has been conducted to find out how anisotropic structures such as grown meat 

differ from isotropic gel-like structures by recording jaw movements and muscle activity during 

chewing: Oppen, Young, Piepho, and Weiss (2023) were able to show relationships between 

particle size and anisotropy over the course of mastication by modeling features calculated for 

every signle chew over time of mastication using a linear mixed model. This is of immense value 

in understanding specific differences in any of the mastication features (such as velocities, 

amplitude, or muscle activity). It provides the possibility to model the dynamic change of specific 

features (e.g. the muscle activity per chew) over the course of mastication. A discrimination from 

e.g. sample A to sample B is not possible following this evaluation strategy. 

From an industry’s point of view, the assessment described by Oppen et al. (2023) is too specific. 

It is not of immense value to enable food manufacturers to track the dynamic change of jaw muscle 

activity while eating procucts. Being able to assign the product to a certain group, based on all 

features combined, could however be of great benefit. This would for example enable a pass or 

fail qualification for food quality, or open the possibility to assign meat alternative products to the 

categories “consumed like meat”. Machine learning algorithms have the potential to find particular 

patterns in datasets that are not linearly interdependent, making it a more flexible tool for big 

datasets (Khan, Sablani, Nayak, & Gu, 2022; Krupitzer & Stein, 2021). Opposed to the before 

presented oral processing studies, which make use of linearly modified food model products, real-

world scenarios are more complex and the to be evaluated features are not necessarily linearly 
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dependent. The use of machine learning has already been discussed in a closely related work by 

Kircali Ata et al. (2023), in which the mechanical properties of meat analogues were correlated 

with their composition (ash, carbohydrates, fat, protein) by various algorithms. However there is 

no prior work known to us, evaluating dynamic oral processing data utilizing a comparable 

evaluation strategy as presented in the current work. 

This work aims to assess common machine learning algorithms' suitability to classify a food oral 

processing dataset of samples with different structures and particle sizes. We applied diverse pre-

processing methods for optimizing the dataset and compared a set of established machine 

learning algorithms concerning their performance using established metrics from the machine 

learning domain. The remainder of this paper is structured as follows. First, the approach is 

explained. Second, the pipeline structure is presented in the implementation section. Third, the 

classification performance of the two different approaches is evaluated in the results and 

discussion section. Lastly, practical remarks, an outlook, and threats to validity are discussed. 

Approach 

The approach of this work is to construct a machine learning pipeline based on mastication data 

for identifying food samples, which differ in particle size and fibrousness. The implementation is 

conducted in Python (Pilgrim & Willison, 2009). 

Dataset 

The used dataset was generated in previous work by Oppen et al. (2023), where it is precisely 

described. Briefly summarized, the researchers attempted to explain the changes of each 

presented oral processing feature in dependence on the particle size, anisotropy, and progress of 

mastication by a linear mixed model. The dynamics of the masticatory apparatus of 11 different 

panelists (4 females, 7 males, 34.5 ± 11.7 years) were measured to generate the mastication data. 

Isotropic and anisotropic samples of 4 different particle sizes were given to the panelists, and their 

jaw movement and muscle activities were recorded during mastication. Each panelist consumed 
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every sample four times, where the first repetition was always discarded in order to exclude 

previously described exploratory effects coming from the sensory discovery as described by Le 

Révérend et al. (2016). The four repetitions of one kind were consumed by the panelists 

subsequently, whereas the different samples were presented in a randomized order.  

Anisotropy and isotropy of the samples was simulated by processing of the meat. Anisotropic 

samples were comprised of whole heat processed muscle tissue whereas isotropic samples were 

prior to heat processing heavily processed by cutting, resulting in destruction of the muscle fiber 

cells, therefore loss of fibrous structure. Chemical composition of all samples was the same. The 

particle sizes were adjusted after cooking by cutting previously diced samples in a bowl chopper 

for different amount of time. The reached particle sizes d90 were for isotropic and anisotropic 

samples 6.08, 14.01 and 19.49 mm, and 7.87, 16.30 and 23.37 mm, respectively. The 

uncomminuted sample was determined on a d90 of 29.2 mm (Oppen et al., 2023).  

Features were calculated for each single chew of the mastication sequence. The measurement 

was started after placing the sample in the oral cavity and stopped, when the food bolus was 

swallowed (Oppen et al., 2023). More specifically, 7980 rows corresponding to single chews, and 

23 columns describing the features are included in the dataset. This dataset contains features 

shown in Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..1, which 

only have integer or float values. The interested reader is referred to Oppen et al. (2023) for details 

regarding the dataset's creation. 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..1: Dataset Features 

Variable 

(abbreviation) 

Explanation Value/Unit 

“P” Unique ID of each panelist Integer between 1 and 11 

“S” ID for sample of each structure Integer between 1 and 4 

“D” ID for structure, isotropic or anisotropic Logical  

“specific_sample” Specific ID for each unique food sample Integer between 0 and 7 

“R” Repeated measurement  Integer between 1 and 3 
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“C” Contiuous chews in one sequence Integer between 1 and n, 

where n = max number of 

chews 

“Rel_chew” Relative progress of mastication, 0 as start 

and 1 as end of sequence 

Float numbers between 0 

and 1 

“part_size” Optically determined Ferret diameter d90 of 

samples 

[6.1, 7.8, 14, 16.3, 19.5, 

23.3, 29.2] 

“Time” 

Timechew 

Time from maximal z- to maximal z-value  (s) 

“lateral_movement” 

Latmean 

Mean of absolute y-values over one cycle  (mm) 

“max_lateral_movement” 

Latmax 

Max of absolute y-values over one cycle 

(mm) 

(mm) 

“lat_side” 

Latamp 

Mean of y-values (positive = right, 

negative = left) over one cycle  

(mm) 

“Vertical_amplitude” 

Vertamp 

Difference of max. z-value before 

downstroke to min. z-value after 

downstroke  

(mm) 

“Downward_velocity” 

Vdown 

Maximal value of the numerical derivative 

between two opening positions  

(mm/s) 

“Upward_velocity” 

Vup 

Minimal value of the numerical derivative 

between two opening positions  

(mm/s) 

“Occlusal_duration” 

Timeocc 

Duration between two opening positions 

with a velocity of less than 15 mm/s 

(s) 

“EMG_Integral” 

EMGAUC 

Numerical integration of rectified, filtered 

EMG signal of each cycle  

(µV*s) 

“EMG_max” 

EMGmax 

Maxima of rectified, filtered EMG signal 

of each cycle  

(µV) 

“EMG_maxint” 

EMGmax/AUC 

Quotient of EMG max and EMG AUC of 

each cycle 

- 

“EMG_powerstroke” 

EMGpowerstroke 

Numerical integration of rectified, filtered 

EMG signal (µV*s) during one cycle 

where the derivative of the movement was 

lower than 15 mm/s 

(µV*s) 

“EMG_occ_quot” 

EMGpowerstroke/AUC 

Quotient of EMG power stroke and EMG 

AUC of each cycle 

- 

 

Exploratory Data Analysis 

We conducted a conventional exploratory data analysis before applying machine learning 

algorithms to the dataset, including calculating the feature’s correlation, outlier detection, and 

checking the dataset for missing values. The dataset was further analyzed for class imbalance 

and Gaussian distribution of the values. Learning on imbalanced data would, without precaution, 
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result in better prediction values for the larger class. Gaussian distribution of data is often assumed 

by basic learning algortihms such as Logistic Regression or the Gaussian Naive Bayes algorithm. 

Based on the findings, random oversampling of data by synthetic minority oversampling technique 

(see Section Kapitel 1889733088) was applied, eliminating the class imbalance. Further, 

ensemble learning algorithms which are generally more robust against imbalance and non-

gaussian distributed data were applied. The correlation analysis of the features proposed that all 

features hold essential information and are not redundant, wherefore none of the features were 

excluded at this stage.  

Machine Learning Approach 

This work applies two groups of learning algorithms: (i) Classical machine learning algorithms and 

(ii) ensemble learning classifiers, listed in Table Fehler! Kein Text mit angegebener 

Formatvorlage im Dokument..2. Ensemble learning classifiers combine different algorithms, 

which all learn a model. A meta-learner aggregated the different models' outcomes into one single 

output value.  

We applied a machine learning pipeline, i.e., a well-defined order of actions defined by an 

algorithm-like structure, to structure the coding operations. In principle, the pipeline might be re-

used for other datasets with the same variables or, slightly adjusted, with datasets following 

another structure. We describe the details of the pipeline’s implementation in Section “Pipeline 

Structure”. 

Generally, the dataset provides three different variables that can be used as targets for the 

analyses: particle sizes (4 manifestations), food structures (2 manifestations), and the different 

samples (8 manifestations embodied by the 4 particle sizes times two different food structures). 

The goal of our analysis is a classification analysis, i.e., the machine learner analyzes the different 

variables and builds a model that explains the relations between the manifestations of the 

variables, called features, and the manifestations of the target variable, the so-called class. Hence, 
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the machine learning model can be used to predict the value for the target class based on the 

observed data pattern for the other variables. This work only focused on two target variables: each 

individual sample and the food structure. Accordingly, we repeated our machine learning pipeline 

- composed of data examination, pre-processing, classification, and performance evaluation - for 

each target (shown in Figure Fehler! Kein Text mit angegebener Formatvorlage im 

Dokument..1).  

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..2: Applied machine 

learning algorithms with representative source 

Classical Algorithms Abbreviation Source 

Support Vector Machines SVM (Mammone, Turchi, & Cristianini, 2009) 

Decision Tree DT (de Ville, 2013) 

Gaussian Naive Bayes GNB (Bayes & Price, 1763; Breese, Heckerman, 

& Kadie, 2013) 

k-nearest Neighbors kNN (Altman, 1992) 

Logistic Regression LR (Cox, 1959) 

Artificial Neural Network 

Classifier 

ANN (Murtagh, 1991) 

Ensemble learning Algortihms   

Random Forest RF (Breiman, 2001) 

Extra Trees Classifier ExtraTrees (Geurts, Ernst, & Wehenkel, 2006) 

Extreme Gradient Boosting 

Classifier 

XGBoost (T. Chen & Guestrin, 2016) 

Adaptive Boosting Classifier AdaBoost (Freund, Schapire, & Abe, 1999; Freund & 

Schapire, 1997) 

Gradient Boosting Classifier GradBoost (Friedman, 2002) 
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Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..1: Flowchart 

describing the in this work conducted data processing and evaluation steps.  

 



11 

Implementation 

This section first provides an overview of the pipeline structure (shown in Figure Fehler! Kein 

Text mit angegebener Formatvorlage im Dokument..1). Afterward, it describes the 

implementation of the different activities of the machine learning pipeline. In consecutive order, 

we present the data pre-processing, model learning, and model evaluation. 

Pipeline Structure 

The machine learning pipeline is divided into six different pipelines for each algorithm. An example 

of the pipeline structure is described in the section below: The first pipeline does only implement 

the basic algorithm with default parameters. The second pipeline standardizes the data before 

training the algorithm. Through standardization, better comparability across the data of different 

subjects is possible. Following the same argumentation, the third pipeline normalizes the values 

before training the algorithm instead of standardizing it. In pipeline four, data is first standardized, 

as this method showed improvements in the performance. Afterward, the principal component 

analysis (PCA) is applied to reduce dimensionality. Pipeline five uses the ANOVA F-test with 

standardized data for feature selection before training the algorithms (data not shown). Features 

are the variables of the data that are included in the machine learning model. Determining the 

inclusion and exclusion of data variables is part of the learning process. It depends on whether 

the machine learning algorithm identifies that the values of a variable can contribute to the 

prediction of the corresponding class. The last pipeline applies standardization and further 

Synthetic Minority Oversampling Technique (SMOTE), which is a common data augmentation 

method. As in general, the results of machine learning are improved with an increase in the amount 

of data, often data augmentation methods are applied to increase the amount of data. We assume 

that the analyzed dataset might benefit from those techniques as it is relatively small and, hence, 

tested them.  
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These different pipelines aim to compare the usefulness of the applied pre-processing techniques 

and find the best-fitting pipeline for each classification approach. Overall, 11 different machine 

learning algorithms were trained (Table Fehler! Kein Text mit angegebener Formatvorlage im 

Dokument..2). As the pipelines integrate the data preparation techniques mentioned before 

training, each pipeline must be applied with each machine learning algorithm. Therefore, the 

generated pipeline structure has a total number of 6x11=66 pipelines.  

Data Pre-Processing 

In the following this section presents the applied pre-processing techniques. We used 

dimensionality reduction by a PCA and an ANOVA F-test for feature selection in addition to those 

presented below. Further, the outlier detection method iForest was applied (Cheng, Zou, & Dong, 

2019). However, those additional pre-processing techniques did not improve the algorithms and 

are therefore not further discussed. 

Data Transformation 

We used the MinMaxScaler and StandardScaler functions of the commonly applied scikit-learn 

Python package for machine learning as scaling techniques. Two pipelines of the basic algorithm 

and each scaling technique were implemented to visualize which scaling method performs the 

best based on the individual algorithms. The StandardScaler showed significant performance 

improvements in preliminary examinations and was later used as a pre-processing technique for 

data augmentation. 

Data Augmentation 

We applied the commonly used oversampling technique SMOTE. This technique has different 

subtypes, which can be applied by importing the “imblearn.over_sampling” package from scikit-

learn. To simplify the code and to be able to compare the results, the common subtype "SMOTE" 

is used. 
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Model Learning 

Two methods, the train-test split, and k-fold cross-validation, were used to split the dataset. Both 

methods have the advantage of preventing over-fitting by separating the training and testing data. 

Since the dataset includes a low amount of data compared to other datasets used in machine 

learning, an 80/20 train-test split was applied. This means that 80 % of the data points are used 

for training the machine learning model, and the remaining 20 % are used for analyzing the 

model’s performance. To enable reproducibility, we configured the split in a way that allows to 

have the same data split when restarting the code. 

To prevent over-fitting and to increase robustness, k-fold cross-validation has been performed as 

a second method for splitting the data into training and testing data. In this case, 10 was chosen 

as k, i.e., 10 different models were built, and each model was trained on nine folds and tested on 

the remaining tenth fold. Performances of the different models are measured and averaged on 

different evaluation metrics automatically by the used procedure. k-fold cross-validation has the 

benefit of using the whole dataset for training and testing. Further, as the final model is an 

aggregation from best-fitting models of the k generated sub-models, the final model is more robust 

against variations in the data. The results presented in this work were all conducted applying the 

k-fold cross-validation since it showed improved performance compared to the train-test split. 

Model Evaluation 

This section focuses on the process of model learning and evaluating its performance. Therefore, 

it presents the selected performance evaluation metrics and determination of the feature 

importance, i.e., the contribution to the model’s explainability of each individual feature in the 

training process. The testing subset is used to validate the trained algorithms' ability to classify the 

output feature correctly (fiber structure or each sample). The performance of each algorithm was 

calculated by using different evaluation metrics: Accuracy, Area under Receiver-Operating Curve 

(AUROC) score, F1 score, precision and recall, Matthews Correlation Coefficient (MCC), ROC 
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curve and precision-recall curve (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000; Fawcett, 

2006; Hripcsak & Rothschild, 2005; Keilwagen, Grosse, & Grau, 2014). Different metrics have to 

be chosen based on the type of machine learning task classification, regression, or clustering for 

balanced or imbalanced data. The MCC was used as the primary decision criterion in the present 

work since it is a robust metric. The MCC considers all four confusion matrix categories (true 

positive, false positive, true negative, and false negative) and only results in high scores if the 

algorithm shows high scores for all four (Chicco & Jurman, 2020). For the best performing 

algorithm of the structure classification, the confusion matrix is shown additionally to the MCC. To 

get more information about the relevance of each feature, when training a specific model, the 

feature importance was evaluated where applicable – for Support Vector Machine (SVM), k-

nearest-neighbor (kNN), Logistic Regression (LR), and Artificial Neural Network (ANN), the feature 

importance module is not available.  

Results and Discussion 

This section describes the results of our analysis. First, we present the results of the exploratory 

data analysis. Second, we show the analysis and evaluation results of the applied machine 

learning algorithms. 

Exploratory Data Analysis 

According to the correlation heatmap shown in Figure Fehler! Kein Text mit angegebener 

Formatvorlage im Dokument..2, features with no correlation are colored black, positive linear 

correlation is colored in orange, and features with negative linear correlation are colored in blue. 

The analysis aims to identify strong linearly correlated features, as multicollinearity can impact the 

performance of machine learning, causing unstable regression cefficients. Since no features show 

direct linear correlation (1), none were removed from the database. Severe multicollinearity is 

assumed above correlation of 0.7, which was evident for TimeOcc with both, Time and 

EMGpowerstroke/AUC. The features EMGAUC, EMGpowerstroke, and EMGpowerstroke/AUC are all based on 
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the muscle activity during one chew and thus show moderate correlations. It can also be noticed 

that Latmean and the fiber structure ID “D” show a moderate negative correlation. It was however 

decided that the correlation is not as strong to impact the classification performance, and rather 

add more information to the classification task. To further account for the potential multicollinearity 

problem, algorithms which are due to their structure immune to multicollinearity (e.g. XGBoost and 

Random Forest) were applied. 

 

Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..2: Heatmap of the 

feature correlation analysis conducted as part of the exploratory data analysis. Features 

and abbreviations are explained in Table Fehler! Kein Text mit angegebener Formatvorlage 

im Dokument..1. 

Data curation regarding outlier detection and deletion of missing values is essential to enable a 

robust and well-performing machine learning algorithm. However, calculated outliers can also be 
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misunderstood, especially when dealing with skewed data or small datasets. Therefore, it is 

essential to know the type of data for deciding whether dropping outliers is suitable. In this case, 

statistical outliers according to the iForest method could be detected; however, this has likely to 

be attributed to the high inter- and intraindividual variations in the mastication physics over the 

term of mastication. However, they are considered to convey important information and cannot be 

neglected. For example, the first bite of a sequence involves jaw movements where the sample is 

placed between the teeth. Therefore, it most likely has a significantly larger vertical movement 

than the other bites, which marks it as an outlier. We suspected that eliminating the outliers would 

lead to a loss of information. More specifically, this could have resulted in the elimination of a 

particular phase of chewing, such as the first or last bite in a sequence. Eliminating these phases 

would result in a significant loss of information and poorer model performance. Hence, those 

identified exceptional values were not removed from the dataset. Missing values could not be 

detected. 

 

Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..3: Amount 

distribution of datapoints split by each individual Sample (A) and sample structure (B). 

Data is shown as cumulative stacks for all subjects. Class description descriptions are given 

as I: isotropic and A: anistropic with particle sizes: cuboid (not comminuted), large, 

medium and small 

each color indicates an individual subject (n=11) 
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Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..3a shows the 

distribution for eight different samples. The distribution is slightly affected by imbalance. For 

example, class three of the specific samples only has 746 observations, while class four has 1201 

observations. Further, it was noticed that the class of fiber structure is also affected by imbalance, 

see Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..3b. Since there 

is no strict definition of when a feature is imbalanced or balanced, the machine learning approach 

will include techniques for balancing the dataset, as an imbalance in the data might lead to 

overfitting to a specific aspect. 

From Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..3, the 

difference between the samples can already be estimated immediately: Samples I-cuboid, -

large, -medium, and -small (see Figure Fehler! Kein Text mit angegebener Formatvorlage 

im Dokument..3a) correspond to the isotropic samples, Samples A-cuboid, -large, -medium, 

and -small represent the anisotropic samples, whereas the particle size is decreasing from cuboid 

(1 “particle”) over large and medium to small. In Figure Fehler! Kein Text mit angegebener 

Formatvorlage im Dokument..3b, it can be seen that the dataset includes more measured bites 

for the anisotropic sample, indicating that these samples were across all panelists masticated with 

a higher number of chews. A similar effect can be observed for particle size: I- and A-cuboid had 

the largest particle size; hence those samples required more bites and are overrepresented in the 

dataset, while Samples I-and A-small were the finest samples, therefore, requiring the least 

number of chews. 

Sumarizing, the exploratory data analysis could show that the features are not critically correlated 

with each other. Outliers could be detected, but were attributed to the complex nature of 

mastication sequences and therefore not excluded. It was further discovered that the dataset is 

slightly imbalanced, reasoned by different structure of the samples which need less or more chews 

until swallowing. The imbalance was not rated as critical, yet methods that can cope with 

imbalanced datasets were applied. 
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Machine Learning Evaluation 

This section focuses on a thorough analysis and evaluation of the results from various machine 

learning algorithms listed in Table Fehler! Kein Text mit angegebener Formatvorlage im 

Dokument..2, which we used to predict the structure or mixed effect of meat products’ structure 

and particle size. All classifications were further performed with and without respect to the person 

ID to resolve if subject-dependent effects have to be considered or if the effects observed for one 

group of subjects are transferrable to another. In the evaluation section, only data for the person 

ID are shown. The differences are discussed at a later point. 

Evaluation by Sample 

The sample classification output feature represents each meat sample, which is built out of a 

combination of sample size (cuboid, large, medium, small) and fiber structure (anisotropic, 

isotropic). The goal of this multi-class classification is to be able to classify all eight samples with 

the highest possible performance. 

Algorithm Comparison 

The accuracy score is the most common metric for evaluating the algorithm’s performance. This 

score shows how many input values are correctly classified out of all input values. An accuracy of 

more than 0.7 represents a well-performing algorithm. An accuracy of more than 0.9 means the 

classification performance is very good. Orange data points in Figure Fehler! Kein Text mit 

angegebener Formatvorlage im Dokument..4 show the algorithm performance of meat sample 

classification using k-fold cross-validation. Figure Fehler! Kein Text mit angegebener 

Formatvorlage im Dokument..4 shows a comparison of the accuracy scores of the applied basic 

algorithms (Basic), of algorithms with standardized data (Standardized), and of the algorithms 

where data has been standardized with StandardScaler and augmented with SMOTE 

(Augmented). Accuracies are shown as the mean value of the k-fold cross-validation with standard 

deviation. The ensemble learning algorithms perform better than the classical algorithms (e.g., 

SVM, Gaussian naïve Bayes GNB, kNN, or LR) without data standardization or augmentation, 
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except for the adaptive boosting classifier. However, the decision tree algorithm performs with an 

accuracy of 0.3337±0.0138 much better than the other classical algorithms (accuracy =0.1998 to 

0.2778). It even performs better than the ANN classifier (accuracy =0.3049). The SVM classifier 

shows with 0.0107 the smallest standard deviation of accuracy scores over the k-fold cross-

validation out of all classifiers. The ANN classifier has the largest standard deviation (0.0274), 

which shrinks to 0.0128 when scaling the data. Moreover, when standardizing the data, SVM, 

kNN, and the ANN classifiers perform much better than without standardization. The other 

algorithms are not profiting visibly from standardized data. Applying standardization and data 

augmentation has no visible effect on the algo’ithm's performance. Only the adaptive boosting 

algorithm shows little improvement when standardizing and augmenting the data. Overall, the 

ExtraTrees classifier is worth further optimization and study, as it shows the highest accuracy 

score out of all algorithms.  
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Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..4: Algorithm accuracy 

comparison of the two classification approaches (By Sample: ◼◼◼; By Structure: ◼◼◼) for 

three different pre-processing approaches: (i) Basic (◼◼): Without pre-processing, (ii) 

Standardized (◼◼): with standard scaling and (iii) Augmented (◼◼): with data 

augmentation after scaling. Values are displayed as mean values with standard deviation of 

the tenfold cross validation. Algorithm description and abbreviations can be found in Table 

Fehler! Kein Text mit angegebener Formatvorlage im Dokument..2. Accuracy starts from 

0.125 on, as this is approximately the random probability for the sample classification. 

Subscript letters next to datapoints indicate statistically homogenous groups in each 

classification according to a Tukey test (α=0.05). 

Performance Assessment 

When taking all metrics comparatively into account, the best-performing algorithm for sample 

classification is the ExtraTrees classifier without any pre-processing methods like standardization 

or data augmentation. However, the performance is not high enough for a practically helpful 

application. The application of classifying every individual chew of a sequence does not require a 

very high accuracy, since some of the jaw movements in a sequence will always be chaotic and 

not to be classified correctly. Although, we suggest that the accuracy should be for at least more 
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than two thirds of the chews correct. Different evaluation metrics of this classifier are shown in 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..3. First, an accuracy 

of 0.4384 does not indicate a great performance when a score of 1 means perfect classification. 

Yet, it is still better than random guessing, which would have an accuracy of around 0.125 in the 

case of perfectly balanced classes. Second, regarding the AUROC score with a value of 0.8541, 

this result can easily mislead into thinking that the classifier performs well. The AUROC score is 

calculated as the area under the Receiver-Operation Curve, which illustrates a classifier's 

diagnostic ability, more specifically, the true positive against the false positive rate of an algorithm 

as its discrimination threshold is varied (Fawcett, 2006). Third, a Matthews Correlation Coefficient 

(MCC) of 0.3561, which is considered more robust since it takes into account true positive, true 

negative, false positive, and false negative, is not far away from random guessing (MCC=0) 

(Chicco & Jurman, 2020). Fourth, the precision, recall, and F1 score are also far from perfect 

prediction, represented by a score of 1. Overall, it can be concluded that this classification task 

still requires improvement in algorithm performance or even data transformation to be further 

implemented.  

Reasons for the bad performance of each single class (combination of structure and particle size) 

might root from having not enough data for training the algorithms. Compared to the structure 

classification, the dataset is split up into four classes for each structure, resulting in only one fourth 

of datapoints for each class. A higher number of observations is known to increase model 

performance, due to a more Gaussian-like distribution, generally more data to train the algorithms 

robustly, and lower importance of subject-dependent characteristics. Further, small differences in 

the mastication behavior between the particle sizes of the samples could be a reason for bad 

performance. This is in doubt, since other researchers already showed that the particle size of 

samples has a significant influence on the mastication behavior (Kim et al., 2015; Koç, Vinyard, 

Essick, & Foegeding, 2013).  
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Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..3: Evaluation metrics 

of the individual sample classification applying “ExtraTrees” classifier without pre-

processing. 

Evaluation Metric Score 

Accuracy score 0.43835 

AUROC score 0.85407 

F1 score 0.43497 

Matthews Correlation Coefficient 0.35609 

Precision score 0.44053 

Recall score 0.43835 
 

The results were further evaluated by plotting Receiver-Operating Curve (ROC) and precision-

recall curves and calculating the characteristic area under the curve (AUC). The recall and 

precision scores were calculated based on different thresholds, while a higher AUC score means 

better performance. A random classifier would show a horizontal-lined precision-recall curve with 

a precision based on the positive rate (Keilwagen et al., 2014). The AUC for each of the 8 sample 

classes and the micro-average precision-recall AUC are shown in Table Fehler! Kein Text mit 

angegebener Formatvorlage im Dokument..4. Class I-cuboid has the highest AUC score of 

0.570. Furthermore, classes I-small and A-cuboid have an AUC score higher than the micro-

average AUC of 0.440. The predictions for classes I-medium and A-large show the worst 

performance, with an AUC of 0.368 for class I-medium and an AUC of 0.367 for class A-large. 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..4: Precision-recall and 

ROC areas under curve (AUC) for “ExtraTrees” Classifier calculated with scikit-plot for 

every individual sample class. 

Class ROC AUC precision-recall AUC 

I-cuboid 0.570 0.88 

I-large 0.428 0.87 

I-medium 0.368 0.86 

I-small 0.493 0.89 

A-cuboid 0.483 0.84 

A-large 0.367 0.80 

A-medium 0.416 0.82 

A-small 0.437 0.87 

Micro- (Macro-) 

average 

0.440 0.86 (0.86) 
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Class description descriptions are given as I: isotropic and A: anistropic with 

particle sizes: cuboid (not comminuted), large, medium and small 

 

According to the AUROC values, the predictions for class I-small show the best performance of 

all classes with an AUROC of 0.89. Furthermore, classes I-cuboid, -large, medium and A-small 

are predicted better than the micro- and macro-average ROC (AUROC=0.86). Classes A-cuboid, 

-large and -medium are predicted worse than the micro- and macro-average ROC, while class 

A-large has the lowest AUROC value of 0.80. The micro- and macro averages have equal 

AUROC scores. 

Evaluation by Structure 

This section looks at the evaluation results of fiber structure classification. Compared to the multi-

class classification of samples, this approach is a binary classification. Either anisotropic or 

isotropic meat structure can be predicted. 

Algorithm Comparison 

Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..4 visualizes the 

accuracy scores of k-fold cross-validation. First, the plots show much better accuracy scores than 

the plots of sample classification. Once more, the ensemble learning algorithms and the ANN 

classifier perform better than the classical algorithms. kNN performs the worst, with an accuracy 

score of 0.7283. Contrarily, Extreme Gradient Boosting (XGBoost) has the best performance out 

of all fundamental algorithms, with an accuracy score of 0.9662. When standardizing the data, 

SVM, KNN, and the ANN classifier show visible performance improvement, while the other 

algorithms' accuracy score does not change visibly. Applying SMOTE to the dataset does not 

visibly improve any algorithm's performance. It even slightly decreases the performance of the 

gradient boosting classifier from 0.9405 to 0.9378. Random Forest (RF), the Extra Trees Classifier 

(ExtraTrees), and the Gradient Boosting Classifier (GradBoost) have similar accuracy scores. It 

can be noticed that the GNB classifier does not show improvements when applying the pre-

processing techniques StandardScaler and SMOTE. The accuracy scores of k-fold cross-



24 

validation further show a small standard deviation between 0.0037 and 0.0246, which describes 

that most values are close to the mean accuracy. 

Matthews Correlation Coefficient 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..5 shows Matthew’s 

Correlation Coefficients (MCC) of each pipeline and machine learning algorithms since it is 

considered a robust evaluation metric (Chicco & Jurman, 2020). The classical algorithms SVM, 

GNB, KNN, and LR show the best MCC when transforming the dataset using the data 

augmentation technique SMOTE. Furthermore, the decision tree algorithm works best with 

normalized data. The best performance for the ensemble learning algorithms is achieved without 

additional pre-processing methods (Standardization and Augmentation) or by standardization. 

Moreover, standardizing the dataset shows the same evaluation results as only implementing the 

basic algorithms Extra Trees Classifier, XGBoost, AdaBoost, and GradBoost classifier. The best 

MCC score of 0.9308 is achieved using XGBoost indifferent of the pre-processing (none, 

Standardization or Augmentation). 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..5: Matthews 

correlation coefficient of the sample structure classification for three different pre-

processing approaches: (i) Basic: Without pre-processing, (ii) Standardized: with standard 

scaling and (iii) Augmented: with data augmentation after scaling. Algorithm description 

and abbreviations can be found in Table Fehler! Kein Text mit angegebener Formatvorlage im 

Dokument..2. 

Model Basic Standardized Augmented 

SVM 0.52532 0.87854 0.88183 

DT 0.81259 0.81234 0.80559 

GNB 0.59942 0.59942 0.62193 

KNN 0.43893 0.78905 0.78943 

LR 0.74280 0.74094 0.74751 

RF 0.88646 0.88646 0.87996 

ExtraTrees 0.88767 0.88767 0.88283 

XGBoost 0.93080 0.93080 0.92934 

AdaBoost 0.82505 0.82505 0.82162 

GradBoost 0.87906 0.87906 0.87485 

ANN 0.88037 0.93023 0.92861 
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Feature Importance 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..6 shows the feature 

importance of the fiber structure classification with k-fold cross-validation. It is important to note 

that Latmean (mean absolute lateral jaw displacement per bite) is the top feature in all the presented 

algorithms, besides the adaptive boosting classifier. The Adaptive Boosting Classifier is the only 

algorithm that shows the largest importance of Latside (mean lateral jaw displacement for the side, 

where positive and negative values describe left and right). However, this feature is calculated 

with the same values of lateral movement as Latmean. This also explains the importance of Latmean 

when training the Adaptive Boosting Classifier. The same results of Latmean and Latside being the 

key features is achieved when classifying the eight samples. 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..6: Feature Importance 

of the classification of sample structure of the best six best performing algorithms without 

pre-processing. The sum of each column equals 1 and expresses the weight that each feature 

influenced the model performance. Features explanation and abbreviations can be found in 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..1. 

Feature* DT RF ExtraTree XGBoost AdaBoost GradBoost 

Latmean 0.53737 0.45115 0.35011 0.39205 0.28 0.66126 

Latside 0.15022 0.09156 0.05926 0.12480 0.34 0.17427 

EMGpower/AUC 0.05826 0.05752 0.06858 0.08038 0.04 0.03980 

Latmax 0.06280 0.05549 0.05555 0.07464 0.12 0.05665 

P 0.02252 0.03810 0.07227 0.07339 0.14 0.02272 

Time 0.01988 0.04317 0.05691 0.04731 0.02 0.01259 

Vdown 0.02533 0.03810 0.04274 0.03514 0.02 0.01508 

Vup 0.02458 0.04094 0.04792 0.03150 0.02 0.00482 

EMGAUC 0.02761 0.04670 0.05387 0.03032 0.02 0.00588 

Vertamp 0.02020 0.03243 0.04244 0.02639 0.00 0.00085 

Timeocc 0.01293 0.02757 0.04247 0.02286 0.00 0.00230 

S 0.00882 0.01200 0.03000 0.02226 0.00 0.00115 

rel_chew 0.01764 0.02880 0.03644 0.02134 0.00 0.00165 

EMGpowerstroke 0.01183 0.03647 0.04143 0.01762 0.00 0.00098 

* Features are listed with decreasing feature importance according to the best performing algorithm, 
XGBoost 
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Furthermore, AdaBoost does not show any feature importance of S, rel_chew, Vertamp, Timeocc, 

and EMGpowertstroke for the classification with person ID. Overall, it can be concluded that the 

feature Latmean is important in the fiber structure classification approach. With a feature importance 

of around 0.35 to 0.67, this feature is significantly involved in the training process. The other 

features are also important but have much smaller feature importance. It can further be seen that 

all three features related to lateral movement (Latmax, Latmean, and Latside) are under the top four 

important features. Hence, we claim that the main difference between chewing anisotropic and 

isotropic samples is the lateral movement of the jaw. 

Performance Assessment 

The best-performing classifier for fiber structure classification is XGBoost. XGBoost shows the 

same results without additional pre-processing and when standardizing the data. Because of 

simplicity, the pipeline of XGBoost without scaling is shown below. Table Fehler! Kein Text mit 

angegebener Formatvorlage im Dokument..7 presents the achieved scores of selected 

evaluation metrics. With an accuracy of 0.9662, the fiber structure is classified correctly into 

anisotropic and isotropic samples. The MCC score of 0.9308 represents an outstanding 

classification performance, which is not far from ideal (=1). Also, considering the AUROC score of 

0.9956, this algorithm performs excellently. Both metrics demonstrate that the algorithm has a 

high true positive rate without a high error rate of false positives. The F1, precision, and recall 

scores are also above 0.9, strengthening the previous conclusion. Recall, precision, and the F1 

score all together show that the precision of the algorithm (returning only relevant results) and the 

recall of the algorithm (returning all relevant results) are on a very high level. This presents an 

outstanding applicability to real world scenarios since oral processing tasks for product 

development do not have the requirement of a classification with accuracies beyond 99%. In 

Section „Evaluation by Sample” we stated that even an accuracy of more than 0.66 is not 

necessarily bad and could be applied to distinguish if, e.g., texturized vegetable protein samples, 

often applied as meat substitute, could be told apart from real meat structures based on the 
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mastication physics. The low requirements are because it is not about high risk and sensitive 

classification tasks, but rather about quality and indications if for example product development is 

taking steps in the correct direction. 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..7: Evaluation metrics 

of the sample structure classification applying XGBoost without pre-processing. 

Evaluation Metric Score 

Accuracy score 0.96617 

AUROC score 0.99559 

F1 score 0.97049 

Matthews Correlation Coefficient 0.9308 

Precision score 0.97429 

Recall score 0.96678 
The precision-recall curve, shown in Figure Fehler! Kein Text mit angegebener Formatvorlage 

im Dokument..5 (right), plots the precision on the y-axis and the recall on the x-axis. In this figure, 

the folds of k-fold cross-validation are shown separately and as mean values. It can be noticed 

that all scores show an AUC score above 0.995, which is excellent for a classifier and far away 

from random guessing (AUC=0.5). Also, when looking at the different folds, it can be noticed that 

the values have little standard deviation. The ROC curve, shown in Figure Fehler! Kein Text mit 

angegebener Formatvorlage im Dokument..5 (left), affirms the results of the precision-recall 

curve. Being pushed in the left corner, the mean ROC curve visualizes a well-performing classifier. 

Furthermore, the ten folds show AUROC scores between 0.9936 and 0.9970, demonstrating a 

small standard deviation. 
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Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..5: ROC- and precision 

recall curve for the classification by sample structure applying XGBoost without pre-

processing. Results are displayed as the ten individual folds of the cross validation and 

mean value (thick black line) of all folds. 

Visualizing the true and false positive and negative rate, which are all considered in the MCC, 

again proves that the classification conducted with XGBoost is promising (see Figure Fehler! Kein 

Text mit angegebener Formatvorlage im Dokument..6). With 4426 out of 4579 chews correctly 

identified as anisotropic food and only 117 out of 3401 chews faulty assigned to anisotropic food, 

the error is kept minimal. 
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Figure Fehler! Kein Text mit angegebener Formatvorlage im Dokument..6: True and false 

predicted classes of the XGBoost classifier displayed as confusion matrix. Values were 

calculated for the 10-fold cross validation of the sample structure classification. Aniso refers 

to samples with anisotropic grown meat structure and Iso refers to isotropic sausage like 

structured products. 

 

Discussion of Practical Implications 

One objective of this work was to determine subject-dependent effects on classification accuracy. 

It was hypothesized that the unique person ID is essential for correctly classifying the food oral 

processing dataset, as each person has individual chewing patterns and habits. At least, a strong 

impact on oral processing parameters by the subjects body weight, salivary flow rate, dental 

status, or age was proposed by Ketel, de Wijk, de Graaf, and Stieger (2020). Therefore, the model 

should become more accurate if the data can be adjusted for individuals. However, we 

demonstrated that the influence of the individuals influence "P" is minimal. Each pipeline was 

calculated with and without "P" taken into account, but no significant differences were found. This 

is also supported by the low feature importance of "P", as shown in Table Fehler! Kein Text mit 

angegebener Formatvorlage im Dokument..6. At first sight that appears to be in contrast with 

previous findings stating that oral processing characteristics vary at an absolute level depending 

on the above factors. This work could however show that for specific applications and with correct 

data pre-processing, the subject-related effects are reduced. It is rather assumed, that the extend 

of the measured feature differs stronger or weaker in dependence on the subject, which can be 

eliminated by standardization or choosing of an appropriate algorithm. The mechanism how the 

mastication process is adapted to the food material however is always of similar kind. Hence, we 

propose that there exist food material specific oral processing characteristics that are elicted upon 

consumption, which do not only apply to a specific group of people; but there is evidence for a 

general dependency between chewing behavior and structure that can be found in every healthy 

adult human being. For practical applications of oral processing studies, this is of great value, 

since it proves that it is not only possible to record oral processing parameters for individuals and 
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bring them in context to the food structure. It is moreover possible to contextualize specific 

structure and sensory terms with oral processing features, enabling to read for example the 

fibrousness of food from oral processing data. This could serve as additional tool to the present 

days conventional texture analysis by deformation and a sensory panel. Conventional sensory 

studies have the drawback that the panelsists are distracted by more aspects of the product than 

only the texture, such as appearance aroma and flavor. Benefits against texture analysis by 

deformation are given by the fact that the food is in the case of oral processing masticated in a 

real-world scenario, mixed with saliva, brought to bodytemperature, crushed, cut and ground by 

teeth, and broken down by enzymes. All the before mentioned temporal effects can to date not be 

simulated in one device. Oral processing however lacks true material specific values, aromatic 

and flavor perception, and the individual impression of the panelists. Hence it is important to bring 

multiple methods in combination for a promising and holistic product characterization. 

This work could show that pre-processing of the data is beneficial for some algorithms to achieve 

good accuracies. However, only standardization of the values proved very effective. Other pre-

processing techniques, such as ANOVA or PCA, showed no significant effects or even reduced 

accuracy. The earlier discussed issue of multicollinearity of some features describing time and 

muscle activity characteristics of mastication sequence might have lead to the worse performance 

of classic algorithms (e.g. KNN, LR and GNB) in comparison to algorithms which are immune to 

multicollinearity like XGBoost and Random Forest.  

A direct comparison of this works relusts to our previous work (Oppen et al., 2023) applying a 

linear mixed model to the given dataset is not possible because the scope of the analysis was 

different. While this study attempted to find data patterns that would allow the samples to be 

differentiated into classes, the original work aimed to find effects in isolated jaw movement or 

muscle activity features, understanding which structures and particle sizes result in what kind of 

differences in jaw movement and muscle activities. The original method did not allow for 

classification but found statistically significant effects of the isolated features depending on the 
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progress of mastication, particle size, and state of anisotropy further taking into account individual 

errors of each individual subject. More specifically, the evaluation utilizing a linear mixed model 

enabled to model single features, e.g. the peak muscle activity with the fixed variables progress 

of mastication, particle size and anisotropy. Following, one could exactly see how, at which 

mastication stage, and to which extent the variation of mentioned variables influenced the peak 

muscle activity. The dependencies in Oppen et al. (2023) are expressed as functions, which 

include a coefficient for every fixed effect and a random statement. The model allows to calculate 

the significance of every effect, providing information if the effect of particle size is significantly 

influencing e.g. the lateral jaw movement. Differences between specific samples (e.g. small 

particle size, anisotropic vs. isotropic structure) could not be evaluated with the chosen method of 

evaluation. 

In contrast, this work used machine learning to classify the dataset, assigning a class to each 

individual chew in the dataset. Either the structure of the sample or the combination of structure 

and particle size was chosen as the class. The machine learning algorithms thus did not create 

models based on only one of the oral processing features, but considered them all simultaneously. 

In this way, it can also be shown which features significantly influence the assignment of a data 

point to a certain class. In summary, the approach described in Oppen et al. (2023) examined 

detailed food influences on specific oral processing characteristics, whereas the present work 

aims to use the differences described to classify model food systems together based on all oral 

processing characteristics.Classifying the eight food samples with machine learning could show 

potential, reaching accuracy scores of up to 0.4384 and an AUROC of 0.8541 for the Extra Trees 

Classifier. Against the random probability of 0.125 for eight samples, we could demonstrate that 

specific patterns could be recognized but not of sufficient precision for an application. It is 

hypothesized that a higher number of panelists would, due to (i) a more Gaussian-like distribution, 

(ii) generally more data to train the algorithms robustly, and (iii) lower importance of subject-

dependent characteristics, result in better accuracies. For future work, the single bites could be 
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brought in context to their original sequence again, enabling to enhance the precision by not taking 

every single bite by itself but taking into account the whole sequence. 

For the classification of anisotropy, this work resulted in excellent model performance, showing 

that the data of each bite can be assigned to the correct structural parameter "isotropic" or 

"anisotropic" with an accuracy of 0.9662. The feature importance analysis showed that the lateral 

movement of the jaw contributed strongly to the algorithm's performance. The application of a 

mixed linear model by Oppen et al. (2023) could not show a significant isolated effect of anisotropy 

on lateral movement; still, the interaction of masticatory process, particle size, and anisotropy was 

highly significant (Oppen et al., 2023). 

Threats To Validity 

This paper aimed to build a machine learning approach that uses existing algorithms to classify 

the mastication data of jaw movement and muscle activity. However, the goal was not to generate 

more data with experiments or to build novel algorithms. This work has limitations in some 

respects, which we will summarize in the following. First, the amount of data or, more precisely, 

the number of panelists in the dataset is comparably small and might not be representative. 

Further, robustness might threaten validity since oral processing data are highly individual and not 

perfectly Gaussian distributed. For further works, using person-independent learning by applying 

the “leave one subject out” cross-validation would also be suggested. This work covered many 

learning classifiers from ensemble learning algorithms; however, only one artificial neural network 

could be implemented in this study. With steady progression in deep learning, long-short term 

memory neural networks, recurrent neural networks, or feed-forward artificial neural networks, for 

instance, could be added to the machine learning pipeline. Further, we investigated the use of 

hyperparameter tuning of all investigated algorithms, i.e., additionally optimizing the parameters 

of the machine learning algorithms. Evaluated hyperparameters were for example the learning 

rate, number of estimators, maximal depth and the hidden layer size, depending on the 
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investigated algorithm. The limited approach of hyperparameter tuning in this work did not improve 

classification accuracy; however, enlarging the grid and applying it to different algorithms should 

still be considered in future work. Lastly, more versatile pre-processing methods could be applied, 

for example, a transformation of the dataset to a Gaussian distribution, which was impossible due 

to the limited number of panelists. 

Conclusions 

The findings in this work can be seen as a first step towards establishing machine learning in food 

science data evaluation. More specifically, an additional tool to analyze high-dimensional data as 

the present dataset about mastication features of panelists consuming food, for example of 

anisotropic and isotropic structure, is provided. The different pre-processing techniques like 

scaling, dimensional reduction, or feature selection did not improve model performance in most 

cases. Only the application of standardization could enhance the accuracy of SVM, KNN, and 

ANN significantly. Differentiating between the eight individual samples with different macroscopic 

(coarse to fine food particles in four variations) and microscopic (grown meat fiber structure and 

meat protein gel) structure did not result in high accuracy, but ensemble learning classifiers could 

classify the samples significantly better as compared to random guessing. It was shown that the 

binary classification of food microstructure is very promising. With an accuracy of 0.9662 and 

AUROC values of up to 0.9956, the algorithm XGBoost performed best in classifying the dataset 

for the microstructure of the sample. As a key outcome, it was shown that machine learning 

algorithms can classify food into anisotropic meat structures and isotropic meat protein gel 

structures based on masticating patterns. In the field of oral processing, great efforts have been 

made in the past to find slight differences in individual features of oral processing and to 

understand which food structure causes what kind of change in the chewing process. The present 

work makes use of this knowledge and transforms the findings into an application-relevant tool. 

The conducted classification method could for example be applied to evaluate if structured plant 

protein samples classify, based on their mastication pattern, as isotropic or anisotropic meat like 
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structure. This could reveal potential candidates for meat substitute materialA similar approach 

could be taken in the meat production industry: For example, it could be tested whether novel 

meat processing techniques or adapted recipes are to be classified as different from the reference 

method. This would show whether consumer perception could be changed or whether the changes 

remain undetected. Machine learning algorithms based on this work can be used for other food 

oral processing studies that measure various features to describe the kinematics of jaw 

movements and electromyographic data of the jaw muscles. Further, as future work, deep learning 

algorithms could be studied after enlarging the dataset with more individuals. Additionally, the first 

works study how to use machine learning approaches to model a digital food twin (e.g., Henrichs 

et al. (2022), Krupitzer and Stein (2021) and Krupitzer, Noack, and Borsum (2022)). Using the 

applied machine learning algorithms for oral food processing in such a digital twin might be 

beneficial for calculating the mastication of an adjusted receipt based on historical data. 
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