
Applied Intelligence manuscript No.
(will be inserted by the editor)

Optimizing Storage Assignment, Order Picking, and
their Interaction in Mezzanine Warehouses

Veronika Lesch · Patrick B.M. Müller ·
Moritz Krämer · Marius Hadry · Samuel
Kounev · Christian Krupitzer

Received: date / Accepted: date

Abstract In warehouses, order picking is known to be the most labor-intensive
and costly task in which the employees account for a large part of the warehouse
performance. Hence, many approaches exist, that optimize the order picking pro-
cess based on diverse economic criteria. However, most of these approaches focus
on a single economic objective at once and disregard ergonomic criteria in their

Funding: No funding was received to assist with the preparation of this manuscript.
Conflicts of Interest: The authors have no relevant financial or non-financial interests to dis-
close.
Availability of data and material: Not applicable.
Code availability: Not applicable.

V. Lesch (corresponding author)
University of Würzburg
Würzburg
Germany
E-mail: veronika.lesch@uni-wuerzburg.de

P.B.M Müller
University of Applied Sciences Würzburg-Schweinfurt
Würzburg
Germany

Moritz Krämer
io-consultants GmbH & Co. KG
Heidelberg
Germany

M. Hadry
University of Würzburg
Würzburg
Germany

S. Kounev
University of Würzburg
Würzburg
Germany

C. Krupitzer
University of Hohenheim
Stuttgart
Germany

2 Veronika Lesch et al.

optimization. Further, the influence of the placement of the items to be picked is
underestimated and accordingly, too little attention is paid to the interdependence
of these two problems. In this work, we aim at optimizing the storage assignment
and the order picking problem within mezzanine warehouse with regards to their
reciprocal influence. We propose a customized version of the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) for optimizing the storage assignment problem
as well as an Ant Colony Optimization (ACO) algorithm for optimizing the order
picking problem. Both algorithms incorporate multiple economic and ergonomic
constraints simultaneously. Furthermore, the algorithms incorporate knowledge
about the interdependence between both problems, aiming to improve the overall
warehouse performance. Our evaluation results show that our proposed algorithms
return better storage assignments and order pick routes compared to commonly
used techniques for the following quality indicators for comparing Pareto fronts:
Coverage, Generational Distance, Euclidian Distance, Pareto Front Size, and In-
verted Generational Distance. Additionally, the evaluation regarding the interac-
tion of both algorithms shows a better performance when combining both proposed
algorithms.

Keywords Storage assignment, order picking, interaction, genetic algorithm, ant
colony optimization, mezzanine warehouse

1 Introduction

Warehouses play a central role in the supply chain of a company and contribute to
its logistical success. When employing humans, picker-to-parts and parts-to-picker
methods are differentiated [12]. Experts estimate the picker-to-parts system to be
the most common in Western Europe with a share of over 80% [13]. A well-known
picker-to-parts system is the mezzanine warehouse which we address in this work.

Working within a mezzanine warehouse consists of two main tasks: (i) filling
the storage with goods (storage assignment) and (ii) picking items out of the stor-
age (order picking). The storage assignment problem defines the task of selecting
storage locations to put a product into storage. The order picking problem de-
fines the task of computing a pick route that collects the requested products of
a customer order. Finding suitable storage allocations is important, as the allo-
cation of products affects the travel distances during order picking. Due to the
NP-hardness and, hence, the complexity of the storage assignment and the or-
der picking problem, efficient optimization algorithms are required to find satis-
fying solutions within acceptable times. In the literature, many approaches exist
for optimizing both warehouse problems. However, most approaches usually tar-
get either of the warehouse problems; some works target both problems, however
miss to integrate the interrelation between them and view each problem sepa-
rately [8]. However, as identified by [9], warehouse problems are strongly coupled.
Thus, optimizing each warehouse problem individually may yield suboptimal so-
lutions, harming the overall warehouse performance. Since the employees spend
most time traveling in such a mezzanine warehouse [13], it is not surprising that
most approaches focus on optimizing the travel distance. Additionally, ergonomic
constraints are rarely considered, even though mezzanine warehouses represent
labor-intensive working environments.

Optimizing Processes in Mezzanine Warehouses 3

In this paper, we propose an integrated approach for combined storage as-
signment and order picking that simultaneously optimizes multiple economic and
ergonomic constraints in mezzanine warehouses. Expert interviews have shown,
that in practice the following set of economic criteria is important and, hence,
supported by our approach: products should be spread equally among each floor,
fast-moving products should be easily accessible, correlated products should be
stored in proximity of each other, and the storage space should be used as effi-
ciently as possible. Further, we integrate ergonomic constraints such as storing
heavy products and fast-moving products at grip height or reducing the require-
ment to switch a mezzanine floor. In an evaluation using three simulated mezzanine
warehouses of different sizes, we analyze the quality of the solutions returned by
our algorithms compared to commonly used techniques. Finally, we assess the qual-
ity improvement when combining both of our algorithms compared to an isolated
application. Hence, the contribution of this paper is threefold:

1. Design of storage allocation and order picking algorithms that incorporate the
interdependence of both tasks.

2. Integration of diverse economic and ergonomic constraints.
3. Evaluation of the approach in a use case based on real-world data provided by

our cooperation company.

The remainder of this paper is structured as follows. Section 2 presents re-
lated work and delineates our paper from existing approaches. Section 3 presents
the meta-model and floor layout of considered mezzanine warehouses. Afterwards,
Section 4 provides an overview of the goal and a 3-phase algorithm of our storage
assignment approach, while Section 5 presents the details of the proposed Ge-
netic Algorithm for storage assignment. Then, Section 6 shows our order picking
approach based on an adapted Ant Colony Optimization (ACO) algorithm. Sec-
tion 7 presents our evaluation methodology and discusses the results and threats
to validity. Finally, Section 8 concludes the paper and summarizes future work.

2 Related Work

In the literature, diverse storage assignment policies exist such as the dedicated
and the random storage policy [2], the closest open location storage policy [13],
rank-based storage policies [24]. Further, class-based, golden zone, and family
grouping storage policies are introduced in the literature [13,23]. Additionally,
diverse approaches apply optimization techniques. [28] propose a Particle Swarm
Optimization algorithm for warehouses that deploy the class-based storage pol-
icy. [14] presents a mixed integer programming model for optimizing the storage
assignment problem for class-based assigned warehouses. [11] apply local search
algorithms for reorganizing the products in the warehouse to keep it operating effi-
ciently. [19] propose a multi-objective genetic algorithm for optimizing the storage
assignment problem in automated storage/retrieval warehouses.

Similarly, heuristic policies exist for the order picking problem such as the
S-Shape, Return, Mid-Point, Largest Gap, and Combined heuristic [22,26,29].
Besides, [25] presents an optimal algorithm using dynamic programming to find
the shortest pick route in a single-block warehouse. Additionally, [5] propose a
mathematical model in combination with construction heuristics and apply Tabu

4 Veronika Lesch et al.

Search to construct order picking routes. [7] present an integer programming model
for optimizing the order picking problem. [32] propose an Max-Min Ant Sys-
tem (MMAS) algorithm for optimizing machine travel paths in automated stor-
age/retrieval warehouses. [4] propose an ACO algorithm that detects congestion
situations that arise when multiple order pickers traverse the same pick aisle si-
multaneously. [16] presents a comparison on different multi-objective evolutionary
algorithms for order picking and storage assignment. Other approaches apply the
information of orders and order picking to optimize the storage assignment [30,
21]. However, such approaches are not flexible enough in our setting which is not
order-driven and, hence, dynamic interactions between storage assignment and
order picking are required to be considered.

Finally, related work also assess the interaction of storage assignment and order
picking approaches. [24] and [8] provide an overview of well-performing combina-
tions of storage assignment strategies and routing heuristics. [20] analyze different
parameters that affect the travel time in single-block warehouses that deploy the
class-based storage policy. [27] study the effects of different parameters on the
travel distance in multi-block warehouses.

Our work delineates from these existing approaches in diverse aspects. First
of all, our work applies optimization techniques and does not rely on a policy
on how to select fitting storage racks or shortest pick routes. Second, regarding
existing optimization approaches, our work integrates multiple objectives at once
considering economic as well as ergonomic constraints at once while most of the
other approaches focus on a single economic goal. Similarly, the authors of [3] also
integrate ergonomic considerations, but do not focus on optimizing the storage
assignment but rather the order picking only. Finally, in contrast to existing work
that address the influence of storage assignment and order picking tasks, we de-
signed algorithms that optimize the targets of both tasks. Hence, they optimize
storage assignment and order picking with regards to the interdependence of both
algorithms, while other works only provide well-performing combinations of algo-
rithms or perform parameter tuning. Similarly, [16] also integrates both activities,
but do not focus on a multi-objective approach,especially neglecting the ergonomic
constraints. Also the work of [17] integrates both activities, however, they apply a
digital twin based approach rather than considering multi-objective optimization
algorithms.

3 Meta-Model of Considered Mezzanine Warehouses and Overview on
the Processes

The storage assignment and order picking algorithm require information on the
warehouse layout, the product assortment, the products’ storage locations, and the
current state of the warehouse. Figure 1 illustrates our proposed meta-model. The
blue box describes the floor layout defining the arrangement of racks within one
floor of the mezzanine warehouse (FloorLayout). Each floor consists of the classes,
P/D-Point, WidePickAisle, and Rack. A p/d-point is the pickup and delivery point
where personal needs to collect items to be stored in the warehouse or deliver items
of a customer order that were collected. Regard the class WidePickAisle, two types
of pick aisles exist: wide and narrow pick aisles. In wide pick aisles, pickers can
take along their pick cart to cross the aisle while it needs to be parked at the aisle

Optimizing Processes in Mezzanine Warehouses 5

Fig. 1: The meta-model describes the structure and state of mezzanine warehouses.

entry for narrow pick aisles. A floor can be illustrated as a two-dimensional map as
depicted in Figure 2: The racks with their unique identifiers r3 and r4 are assigned
the floor coordinates x = 1 and y = 2 since their access points are both located
at (1|2). The vertical aisles located at x = 0 and x = 4, as well as the horizontal
cross aisles at y = 0, y = 4, and y = 7, form the periphery of the floor. Periphery
aisles usually contain the p/d-points (e.g. at (2|0)). A wide pick aisle is depicted
at x-coordinate two and two narrow pick aisles are shown at x-coordinates one
and three, where the picker needs to park his pick cart. Real-world mezzanine
warehouses may apply different layouts on each floor; however, we assume that
each floor in the mezzanine warehouse applies the same layout.

Since diagonal movements are not possible in this layout, the Manhattan dis-
tance function is applied to calculate the distance between two locations p and q
(with n being the number of dimensions of the coordinates for p and q):

distance(p, q) =
n∑

i=1

|pi − qi| (1)

The classes inside the yellow box (Compartment and RackConfiguration) de-
fine the configuration of a rack, referring to its size, the number of shelf levels,
and the number of compartments per shelf level. The Compartment class includes
an identifier and a three-dimensional vector specifying the compartment’s dimen-
sions. The shelf level and the shelf level position defines the compartment’s loca-
tion within the rack. The class Product defines the products using five properties:
product number, size, weight, rank, and order frequency. The rank (≥ 1) allows
identifying fast and slow-moving products by the frequency at which the product
appears in recent customer orders. The product of rank 1 represents the most
frequently ordered product. The order frequency describes the frequency to which
a product is usually ordered using a gaussian distribution. Both properties are
derived from recent customer orders and represent redundant information which
prevents the algorithms from recalculating this information each time they need

6 Veronika Lesch et al.

Fig. 2: Example mezzanine floor layout from top-down view.

it. Further, these properties are later used in the storage assignment optimiza-
tion to find better racks regarding their frequency and usual ordered amount. The
class ProductAssignment specifies the quantity of which a product is assigned to
a specific compartment. The classes Order and OrderLine of the orange package
define the structure of a customer order consisting of a unique order number and
multiple order lines. An order line specifies the quantity to which a product is or-
dered. The class AssociationRule defines association rules derived by the Apriori
algorithm [10]. The confidence ranges from 0 to 1 and expresses the strength of the
correlation between the left-sided and the right-sided set of products. These rules
are used in the storage assignment algorithm later on to store correlated products
close to each other which may increase the order picking performance.

Figure 3 presents the two processes for the storage assignment as well as order
picking. Storage assignment relies on the NSGA-II algorithm for optimal distribu-
tion of the items in the mezzanine warehouse (see Figure 3a). First, the algorithm
distributes the incoming product across the mezzanine floors with the goal to re-
duce the need for changing floors during order picking. Second, on each floor, the
algorithm searches for appropriate racks to store the incoming product based on
the following four objectives: frequently requested quantity, spread items, distance
to pick-up/delivery points, and correlated products. The NSGA-II algorithm shall
optimize the four objectives. Third, the NSGA-II algorithm selects compartments
for storing the incoming product based on two criteria. (1) Fast-moving products
should be assigned to compartments at grip height. (2) Heavy products should
be assigned to lower-level compartments. Order picking also follows a three-step
approach (see Figure 3b). First, the algorithm constructs a graph representation
based on the information of the pick list as well as the mezzanine floor layout.
Second, the ACO algorithm applies artificial ants that explore the graph. Third,

Optimizing Processes in Mezzanine Warehouses 7

Distribute the
incoming

product across
the mezzanine

floors

Search for
appropriate

racks to store
the incoming

product

Select
compartments

within the
racks

(a) The figure shows the process for the storage assignment using the NSGA-II optimiaztion.

Constructs a
graph

representation

Artificial ants
explore the

graph

Assess the
quality of the

computed pick
route

(b) The figure shows the process for the order picking using the ACO algorithm.

Fig. 3: Schematic overview on the storage assignment (above) and order picking
(below) processes.

the quality of the computed pick route is assessed based on the travel distance
(economic goal) and the weight violations of the items (ergonomic goal). In the
following, we discuss those different algorithms.

8 Veronika Lesch et al.

4 Storage Assignment

The overall goal of the storage assignment algorithm is to select a set of com-
partments for storing an incoming product by considering multiple economic and
ergonomic constraints simultaneously.

4.1 Constraints and Assumptions

In expert interviews, we identified multiple hard constraints that should be cov-
ered in our approaches. These hard constraints specify whether a storage allo-
cation is considered feasible and a feasible solution never violates any of these
constraints: Each incoming item must be assigned to a compartment (HC1). The
selected compartment must either be empty or partially occupied by items of the
same product (HC2). Each item has to fit in the remaining free space if its com-
partment (HC3). Furthermore, we define multiple soft constraints that measure
the extent to which a storage allocation fulfills economic criteria: The products
should be evenly spread on each floor (SC1). Fast-moving products should be as-
signed close to a p/d-point (SC2). The mean ordered quantity of a product should
be locally available (SC3). Correlated products should be stored close to each
other (SC4). The storage space should be used as efficiently as possible (SC5). Fi-
nally, we define two ergonomic soft constraints: Heavy products should be stored
at grip height (SC6). Fast-moving products should be assigned to compartments
at grip height (SC7).

Further, we state the following assumptions for our approach: The state of
the warehouse does not change while the storage assignment algorithm is running.
Thus, the products are not repositioned nor removed, and the racks’ configurations
do not change. Further, the algorithm allocates only one product at a time. The
storage racks may apply different rack configurations and products may only be
assigned to fitting compartments. A compartment is allowed to store multiple
items of the same product but may not store two different products at the same
time. Finally, product ranks and association rules are derived from recent customer
orders.

4.2 3-Phase Storage Assignment Algorithm

Our storage assignment algorithm consists of three phases that intend to reduce
the complexity of the optimization problem: (i) assignment of products to floors,
(ii) assignment to racks w.r.t. economic criteria, and (iii) assignment to compart-
ments w.r.t. ergonomic criteria.

In the first phase, the incoming product quantity is split among the mezzanine
floors (SC1) so that each floor provides the same quantity of the product. This
way, we try to reduce the required floor changes during a pick route to a minimum.
Thus, we first determine the total quantity of the incoming product that is already
available in each floor, calculate the ideal quantity for each floor after storage
assignment, and assign the missing quantity to each floor. Remaining items, due
to rounded results, are allocated to a random floor.

Optimizing Processes in Mezzanine Warehouses 9

The second phase addresses the economic soft constraints SC2 to SC5 and aims
to reduce travel distances during order picking. This phase assigns the incoming
products to racks on a specific floor. Since this phase requires optimizing a set of
constraints, we apply a multi-objective optimization algorithm that is described
in Section 5.

The third phase aims to satisfy the ergonomic soft constraints SC6 and SC7.
We classify a product p into three weight classes: light (up to 3 kg), medium (be-
tween 3 kg and 7 kg), and heavy (over 7 kg). We set the grip height to be be-
tween 0.75m to 1.25m and refer to compartments below/above the grip height as
low/high zone compartments. Additionally, we distinguish fast-moving,moderately-
moving, and slow-moving products by their relative rank. The relative rank of a
product p calculates as rankp/|P |, where rankp denotes the rank of product p,
and |P | the size of the product assortment. In the first step, the incoming items
are assigned to the rack’s compartments that already provide items of the same
product. In the second step, the remaining incoming items are assigned to the
rack’s unoccupied compartments based on predefined penalty values. The penalty
values range from zero to three and the more a compartment comp is unsuited for
storing the product p, the more penalty points are given (see Tables 1 and 2).

Table 1: Penalties for assigning a prod-
uct to a specific compartment with re-
gards to the product weight.

Zone Weight Penalty

high light 0
high medium 2
high heavy 3
grip height light 1
grip height medium 0
grip height heavy 0
low light 0
low medium 1
low heavy 1

Table 2: Penalties for assigning a prod-
uct to a specific compartment with re-
gards to the product rank.

Zone Rank Penalty

high slow 0
high moderate 0
high fast 2
grip height slow 3
grip height moderate 1
grip height fast 0
low slow 0
low moderate 0
low fast 2

5 Genetic Algorithm for Storage Assignment

This section presents our custom version of the NSGA-II algorithm that was pro-
posed by [6]. The algorithm receives the current state of a floor and assigns the
incoming items to a set of racks on this floor. Note that the NSGA-II is executed
for each floor individually.

5.1 Chromosome Encoding

We propose the chromosome encoding depicted in Figure 4. The figure illustrates
an example allocation task where ten items of product p1 must be assigned to
the racks on floor1. The black numbers indicate the existing items of product p1,

10 Veronika Lesch et al.

8

(3)
2

(4)

3

5
(2)(1)

4

Fig. 4: A chromosome encodes the racks selected for storing the incoming items.

while the red numbers indicate the incoming items of product p1. The right side
shows the chromosome that encodes the storage allocation depicted on the left side
by specifying the racks selected for storing each incoming item. Since ten items of
product p1 are assigned, the chromosome’s length equals 10.

5.2 Objective Functions

A set of objective functions guide the NSGA-II algorithm to find good storage allo-
cations. We propose four domain specific objective functions for our maximization
problem: (i) spread score, (ii) distance score, (iii) quantity score, (iv) correlation
score.

5.2.1 Spread Score

This score addresses constraint SC1 and aims to equally spread the incoming qual-
ity of product p across the entire floor. Hence, we divide the floor fj into multiple
areas A of equal size. To calculate the spread score, we use the total (totalQ) and
ideal quantity (idealQ) of a product in an area of a floor. The totalQ is the sum
of the existing and incoming items in an area, while the idealQ is calculated by
dividing the sum of the existing and incoming quantity of product p on the floor
by the number of defined areas. The final spread score for chromosome C is cal-
culated as the sum of differences between the total and the ideal quantity for all
areas (see Equation 2).

spreadScorep,fj ,C = (−1)
A∑

o=1

|idealQp,fj ,j − totalQp,fj ,j | (2)

5.2.2 Distance Score

This score addresses constraint SC2 and aims to allocate slow-moving products
to racks further away from the p/d-points. Hence, the distance score quantifies
the extent to which the walking distances (distri) of the selected racks match
the ideal distance (idealDistp,fj

). For calculating the idealDist, we perform the
following steps: First, we determine the relative rank of the incoming product p

Optimizing Processes in Mezzanine Warehouses 11

by dividing the rank of the product (rankp) by the size of the product assort-
ment P : relRankp = rankp/|P |. Then, the relative rank is mapped to a rack
index: rackIdxp,fj

= relRankp · |Rfj
| with Rfj

being the list of racks of floor
fj sorted by the racks’ walking distances to their closest p/d-point. The rack in
Rfj

at index rackIdx represents the best-suited rack for storing product p with
regard to constraint SC2. Finally, the idealDist computes as: idealDistp,fj

=
Rfj

[rackIdxp,fj
] · distance. The overall distance score calculates as the sum over

all racks in chromosome (C) of differences between the walking distances of the
racks selected for storing product p and the idealDist (see Equation 3).

distanceScorep,fj ,C = (−1)
∑
n∈C

|idealDistp,fj
− distri | (3)

Further, we provide an example of this calculation in Figure 5.

10

10
(10)

20

10

(5)

10
(10)

20

1

2

3

3

2

1

2

3

4

4

3

2

2

3

3

2

1

1

(5)

1 2 3 4

(10)

Fig. 5: Calculating the ideal distance for storing the incoming product p98.

5.2.3 Quantity Score

This score assesses SC3 and ensures that the mean ordered quantity of a product
is locally available. Therefore, the target quantity defines the quantity to which
the product p should be locally available based on a set of recent customer orders:
tqp = ⌈µp +2σp⌉ with µp as expected value for the orders and σp for the standard
deviation. Further, we define four masks and a modifier for each mask to measure
the density to which the tqp is locally available: M1 equals the size of a rack
(maskMod = 1), M2 equals the size of two facing racks (maskMod = 0.75),
M3 is a sliding window with half the sub aisle’s length (maskMod = 0.5), and
M4 covers an entire sub aisle (maskMod = 0.25). Using these masks, we calculate

12 Veronika Lesch et al.

a quantity factor for each sub aisle (sa) of a floor and each mask (Mk). Therefore,
we select the quantity (q) of products inside a mask divided by the target quantity:
qFactorp,fj ,sal

= max(qp,fj ,sal
(Mk)/tqp). This results in a value of 1 if the target

quantity is met and a value of 0 if no products can be found within this mask. This
quantity factor is then multiplied by the maskMod to calculate the mask score:
maskScorep,fj ,sal

(Mk) = maskModMk
·qFactorp,fj ,sal

(Mk). The highest possible
mask score is 1, indicating that the target quantity is available in a single rack of
the sub aisle. Based on these mask scores, the maximum value is selected to assign
a score to each sub aisle: subAisleScorep,fj ,sal

= max4
k=1maskScorep,fj ,sal

(Mk).
The final quantity score computes as the sum of all subAisleScores (with |SA| as
the number of sub aisles):

quantityScorep,fj ,C =

|SA|∑
o=1

subAisleScorep,fj ,sal
(4)

Figure 6 illustrates the idea of using masks of different sizes to measure the
density to which the target quantity tqp of product p is locally available. The left
side shows the storage locations of existing and incoming items of product p in
a specific sub aisle sa. The center of the figure depicts the four masks Mk that
iterate over the racks of the sub aisle. During this process, the masks count the
existing and incoming quantities of product p that can be found in the covered
regions. The right side shows the regions where the masks find the largest quantity
of product p in the sub aisle sa.

8
(5)

5

2 2

(2)

(5)
5

(5)
5

(2) (2)

8 8 8

(2)

(5)
5

2 2

8

2

(5)
5
(2)

Fig. 6: The masks Mk count the quantities of product p in the covered regions.

5.2.4 Correlation Score

This score relates to SC4 and describes the extent to which the incoming product
is stored close to its correlated products. Association rules describe correlations
between products and can be derived from recent customer orders. We consider

Optimizing Processes in Mezzanine Warehouses 13

association rules of the form rule = {p} conf−−−→ {cp}, where p denotes the incoming
product, cp the correlated product, and conf a confidence value. We first calcu-
late the number of possible clusters of target quantities of the incoming product:
qClustersp,fj

= ⌊totalQp,fj
/tqp⌋. We use this value to define the ideal quantity to

which the correlated product should be available in the vicinity of the incoming
product: idealCorrQrule,fj

= ⌈qClustersp,fj
· tqcp · conf(rule)⌉. In the next step,

we determine the quantity of cp that already is available in the vicinity of p. For
this task, the previously introduced masks Mk are used and are placed directly
on top of the racks containing cp. Again, the qFactor is calculated to capture the
extent to which the target quantity of p is available in the region covered by Mk

placed on top of rack r: qFactorp,r(Mk) = qp,r(Mk)/tqp. Then, we calculate the
fraction to which the items of cp stored in r are considered to be in the vicinity
of p: corrQrule,r(Mk) = exQcp,r · qFactorp,r(Mk) · maskModMk

. exQcp,r refers
to the existing quantity of the correlated product cp in rack r. Afterward, we
select the corrQ with the highest value representing the mask with the largest
amount of p in the vicinity of cp: corrQrule,r = max4k=1 corrQrule,r(Mk). The
sum of all corrQrule,r over all racks on this floor denotes the quantity of the
cp on this floor that is considered as being in the vicinity of p: corrQrule,fj

=∑
rack∈Rfj,cp

corrQrule,r. Now, we calculated the quantity of the correlated prod-

uct that is in the vicinity of the incoming product and the difference of this value
to the ideal quantity. Based on this difference, the correlation score is calculated
as (with Ap as the set of associations rules):

correlationScorep,fj ,C = (−1)
∑

rule∈Ap

idealCorrQrule,fj
− corrQrule,fj

(5)

5.3 Genetic Operators

The NSGA-II is a genetic algorithm and requires the definition of selection, crossover,
and mutation operators.

5.3.1 Selection

We apply a binary tournament selection operator where two random parent indi-
viduals compete against each other [6]. The individual with the higher Pareto rank
is declared the winner and is allowed to participate in the crossover procedure. In
case both parents are of equal Pareto rank, the individual with the larger crowding
distance, i.e. the higher diversity, wins the tournament.

5.3.2 Crossover

Since all chromosomes created during a run of the NSGA-II algorithm are of equal
length, we use the traditional single-point crossover operator. It selects a random
crossover point on both parents’ chromosomes, splits them, and recombines them
cross-wise to obtain two new children.

14 Veronika Lesch et al.

10

20

20
5

20

(5)

(10)

10
5

(10)

(5)

(15)

15

20

(5)

10

32

10
10

10

(5)

10
10

(5)

10
10
10

20

1010

2 3 2
20
3

(5) (5)

20 20

10 10

2 3 2 3

10
10

Fig. 7: Calculating the quantity of the correlated product p2 that is available in
the vicinity of the incoming product p1.

5.3.3 Mutation

We define eight mutation operators that incorporate domain-specific knowledge
to guide the search process: (1) The FillRack mutator selects a random rack and
fills it with incoming items from the same sub aisle. (2) The MoveRack mutator
selects a random rack containing at least one incoming item and moves them to
a different rack within the same sub aisle. (3) The FillSubAisle mutator selects
a random sub aisle and fills it with incoming items from other sub aisles until it
provides the product’s target quantity. (4) The ClearSubAisle mutator selects
a random sub aisle and moves any incoming items to a different sub aisle. (5)
The RedistributeExceedingQuantities mutator redistributes incoming items
of racks that provide more items than the target quantity to racks that require
only a few items to provide the target quantity. (6) The ShiftRacks mutator
shifts all incoming items towards a randomly selected direction: left, right, up, or
down. (7) The SwapSubAisles mutator first groups the sub aisles into pairs and
swaps incoming items randomly within each pair. (8) The SwapRacks mutator
is similar to (7) but swaps items within pairs of racks instead of sub aisles.

Optimizing Processes in Mezzanine Warehouses 15

5.4 NSGA-II Algorithm

The overall procedure of our NSGA-II algorithm is summarized in Algorithm 1.
The algorithm receives the product to be stored and its quantity as well as the

Algorithm 1: Proposed NSGA-II Algorithm.

Input: product, quantity, fittingRacks
Parameter: parentPopSize, mutProb, L, δlim, maxGen
Output: paretoFront

1 popparent = initParentPopulation(product, quantity, fittingRacks, parentPopSize)
2 gen = 0
3 historyOfMaxCD = new List()
4 while gen < maxGen && std(L) > δlim do
5 gen++
6 popchildren = createChildrenPopulation(popparent, furtherParametersOmitted)
7 popcombined = popparent ∪ popchildren
8 popparent = createNextParentPopulation(popcombined, parentPopSize)
9 paretoFront = calculateParetoFront(popparent)

10 maxCD = calculateMaxCD(paretoFront)
11 historyOfMaxCD.add(maxCD)

12 return calculateParetoFront(popparent)

list fittingRacks. Further, the parentPopSize defines the size of the parent pop-
ulation, the mutation probability is given by mutProb, the number of generations
to be used when calculating the standard deviation of the maximum crowding dis-
tance std(L) is called L, the threshold for the standard deviation of the crowding
distance is δlim, and the maximum number of generations is called maxGen. In the
end, the algorithm returns a paretoFront of the best storage assignments.

In the first step, the algorithm initializes the population by randomly cre-
ating the required amount of chromosomes. Therefore, the algorithm selects fit-
ting racks for the product randomly which might produce invalid solutions due
to exceeded rack spaces. Each invalid chromosome is then repaired by moving
the amount of exceeding products to another available rack. Then, the genera-
tion counter gen and the history of observed maximum crowding distances are
initialized. Then, the while loop starts and iterates using the two following stop-
ping criterions: (i) the number of maximum generations (maxGen) is executed,
or (ii) the standard deviation of observed crowding distances (std(L)) falls be-
low the given threshold (δlim). Inside the while loop, the generations counter is
incremented, and a complete new children population in the size of the parent
population is bred using the proposed selection, crossover and mutation opera-
tors (createChildrenPopulation). This set is added to a combined population of
existing parent individuals and select the best individuals to fill the new parent
population (createNextParentPopulation()). Afterwards, a Pareto front is calcu-
lated from this parent population (calculateParetoFront()) and the maximum
crowding distance of this front is calculated. This value is added to the history
of maximum crowding distances. In case, the while loop stops, the current Pareto
front is returned.

Since the NSGA-II algorithm returns a Pareto front, a user is usually required
to identify the most valuable trade-off solution. However, we automate this step

16 Veronika Lesch et al.

by applying the following procedure. For each of the four objective functions (ofi),
we select the solution (sj) of the Pareto front with the highest value (ofi(sj)) for
this function. We then use these values as a 4-dimensional reference point (pref =
[e1, e2, e3, e4]). Based on the Euclidean distance, the solution that is closest to the
reference point is automatically selected as the most valuable trade-off solution.

6 Order Picking

This section introduces our order picking approach that is based on ACO. The
overall goal of this algorithm is to construct a pick route for a given customer
order. Since the travel distance is an essential economic goal, the pick route should
be as short as possible. Additionally, the pick route should also be ergonomically
favorable. The need for changing floors should be minimal to reduce the order
picker’s physical stress. Further, the product picking sequence is relevant as if
light products are picked first, the order picker might need to rearrange the already
picked products so that light products are placed on top of heavy products. Hence,
the order picking algorithm aims to construct a short pick route that collects
heavy products first and changes floors as little as possible to address economic
and ergonomic criteria.

The main idea of this approach is to represent a mezzanine warehouse as a
graph and let ants search for satisfactory order picking sequences. We make the
following assumptions to better deal with the complexity of the order picking
problem: (i) The state of the mezzanine warehouse does not change while the
algorithm is running, that is no repositioning or removal of products is performed.
(ii) The start and ending p/d points of a pick route may differ. (iii) Narrow sub
aisles may only be traversed to the sub aisles’ midpoint, as the picker always must
go back to the cart in the wide pick aisle. (iv) The order pickers visit only one
rack each time they enter a sub aisle. (v) Picking carts withstand infinite loads
and can carry an unlimited amount of items.

6.1 Constraints

For the order picking algorithm, we define a set of hard and soft constraints.
The hard constraints assess the feasibility of a solution, while the soft constraints
measure the extent to which the solution fulfills economic and ergonomic goals.
We define the following hard constraints: The pick route must start and end at
a p/d point (HC1). The pick route must collect the requested quantities of the
products specified in the pick list (HC2). After entering a narrow sub aisle, the
route must always return to the sub aisle’s entrance (HC3). Further, we define one
economic soft constraint: The travel distance should be minimal (SC1); And two
ergonomic soft constraints: The need for changing floors should be minimal (SC2).
Heavy products should be picked first, followed by lighter products (SC3).

Optimizing Processes in Mezzanine Warehouses 17

6.2 Graph Representation

We propose the following procedure for transferring a mezzanine warehouse into a
graph representation. Figure 8 illustrates the procedure of dividing the warehouse
into multiple zones called market zones.

3
1
1

3

1

4

4

3

8

2

5

4

Fig. 8: The floor is divided into multiple market zones.

Each market zone is represented by a market, and thus, a node in the graph.
The figure depicts the state of floor1 that consists of three cross aisles, three
wide (pick) aisles, and two p/d-points. We define six market zones obtained by
dividing the floor along the wide (pick) aisles into multiple vertical lanes. In the
depicted example, lane1 refers to the area from aisle0 to pickAisle3, and lane2
refers to the area from pickAisle3 to aisle6. A crossLane(c,l) refers to the part of
the cross aisle c that lies within the lane l. For each cross lane, we define a market
zone that comprises the storage racks that can be visited from the respective
cross lane up to their midpoints. For example, the red market zone includes the
racks that can be visited if the order picker is located at the crossLane(1,1).
The market zones are limited to the midpoints of the corresponding sub aisles,
which prevents the ants from constructing pick routes that entirely traverse the
pick aisles. A market is referred to as market(f,c,l), where f denotes the floor, c
the cross aisle, and l the lane. For each market, we define three attributes: (1)
the market’s coordinates, (2) the market’s closest p/d-point, and (3) the market’s
supply that specifies which products are available at which quantity. After defining
all markets, they are connected via edges to create a complete directed graph. The
edges’ weights represent the Manhattan distances between the markets. If the

18 Veronika Lesch et al.

warehouse consists of a second floor2, the markets on floor1 are also connected
to the markets on floor2 and vice versa, with an extra floorPenalty added to the
edges’ weights.

6.3 Pick Route Construction

An ant colony explores the graph to construct a set of pick routes, i.e., a sequence
of markets that provide the products, for a given pick list. A pick route consists
of two layers: (i) representing markets, and (ii) rack sequences.

Figure 9 depicts an example pick route created by a single ant of the colony.
The market sequence (layer one) of a pick route is computed by an ant that

Fig. 9: A pick route consists of a market sequence and a rack sequence.

is placed on a market within the graph. Guided by the pheromone trails, the
ant visits neighboring markets until it collected the requested product quantities
specified in the pick list. The ant manages a purchasing list that specifies the
missing items. The pick route is complete after the ant’s purchasing list is empty.
Further, each ant must decide whether it enters the market zone from the left
or from the right side which depends on the position of the previously visited
market. The left/right entrance is located at the position where the cross lane
has its lowest/highest x coordinate value. The decision from which side the ant
enters the market zone depends on the position of the previously visited market.
While constructing pick routes, the ant applies a heuristic function to identify the
markets within its vicinity that seem attractive to visit next.

The second layer represents the rack sequence, i.e., the racks the ant visited in
each market. When calculating the rack sequence, the ants use the following prior-
ity rules: (1) Racks that provide heavy products should be visited first. (2) Racks
located closer to the sub aisle’s entrance should be visited second. (3) Racks that
provide the largest quantities should be visited third.

6.4 Heuristic Function

To identify the most promising paths and assess the attractiveness of a market,
the ants apply a heuristic function. The attractiveness of a market is based on two

Optimizing Processes in Mezzanine Warehouses 19

factors: (i) the closeness of the market to the ant’s current location, and (ii) the
availability of required items. Thus, we define the heuristic function as follows:

ηkm,n =

(
1

dm,n

)(
Ikn

)
, where n ∈ Uk (6)

where ηkm,n is the heuristic value that the ant k currently located at market m

associates with the edge (m,n) leading to market n. Uk is the set of markets the
ant has not visited yet and dm,n > 0 refers to the Manhattan distance between
the markets. Ikn ∈ [0; 1] denotes the percentage to which the required items of ant
k are available at market n. The higher the heuristic value, the more attractive is
the market for the ant.

6.5 Objective Functions

After retrieving possible pick routes from the algorithm, we use two objective
functions to asses the quality of the route.

6.5.1 Travel Distance

This objective function calculates the travel distance of a pick route and measures
the extent to which the soft constraint SC1 and SC2 are satisfied. We define a pick
route P to be P = (M,R) where M = (m1, ...,mk) refers to the market sequence
and R = (r1, ..., rl) refers to the rack sequence. We then define the objective
function as follows:

travelDistance(P) = dpdm1
+

l∑
i=1

dsubri
+

k∑
i=1

dcrossmi
+

k−1∑
i=1

dmarket
(mi,mi+1) + dpdmk

(7)

where we sum up the distance from the start p/d-point to the first market, the
sum of the distances within each entered sub aisle (dsubri

), the sum of the dis-
tances within the cross lanes (dcrossmi

), the distances between the visited mar-
kets (dmarket

(mi,mi+1)
), and the distance from the last visited market to its closest

p/d-point (dpdmk
).

6.5.2 Weight Violation

The second objective function measures the extent to which a pick route satisfies
the soft constraint SC3 and counts the number of weight violations in the product
picking sequence. A weight violation occurs if a heavy product is collected after
a much lighter product. In this case, the order picker must rearrange the lighter
products already placed on the picking cart to prevent damage. The user-specified
threshold allowedWeightDifference defines the acceptable weight difference be-
tween the heavier and the lighter products. Using this threshold, we count the
number of weight violations in a product picking sequence.

20 Veronika Lesch et al.

6.6 ACO Algorithm Procedure

This section proposes our proposed ACO algorithm and shows the pseudo-code
in Algorithm 2. First of all, the algorithm constructs the graph and initializes the
pheromones. The pheromones are initialized with their maximum possible value
determined by τmax. Additionally, a minimum pheromone can be specified by using
the value τmin in the parametrization of the algorithm. Then, a while loop starts
and uses the concept of cataclysms [4] and a maximum number of iterations as
stopping criterion: The parameter maxCataclysms specifies the maximum number
of cataclysms that may occur. The parameter maxconsIterWoImpr defines the time
window in which the ACO algorithm must improve the current Pareto front to
prevent the cataclysm operator from being applied. The parameter maxIter defines
the maximum allowed number of iterations regardless of happened cataclysms.

Inside the loop the number of current iterations is incremented and pick routes
are constructed. The general idea is to place one ant on each market of the graph
from which the ant starts to create a pick route. The next market is selected
based on the pheromone values and the heuristic function. We propose two differ-
ent versions of the ACO to combine these values as explained later. For each found
pick route, the reverse pick route is calculated by reversing the market sequence,
toggling the sides from which the ant entered the markets, and recalculating the
rack sequence. We store the pick routes the ants construct in each iteration in
the variable pickRoutes. In the next step, the Pareto-optimal pick routes of this
iteration are selected by calculating the objective function and the Pareto rank of
all routes. Afterward, the iteration-best (pickRoutesib) and the global-best pick
routes (nextPickRoutesgb) are merged into a single set and the Pareto-optimal pick
routes in this set represent the next set of global-best pick routes. The iteration-
best pick routes and the global-best pick routes are used to perform the pheromone
update, which is explained later. In the further course of the iteration, the ACO
algorithm checks whether the cataclysm operator must be applied and compares
the global best pick routes of the last and the current iteration. If the ACO algo-
rithm succeeded in improving the Pareto front, the set pickRoutesgb is updated,
and the counter variable consIterWoImpr is reset to 0. However, if no improvement
was made, this counter variable is incremented. If multiple consecutive iterations
fail to achieve an improvement, the search is considered stuck, and the cataclysm
operator is applied. In case the cataclysm is applied, the global-best pick routes
pickRoutesgb are included in the set pickRoutescataclysm, the pheromones on the
edges representing the pick routes in pickRoutesgb are reset to the lowest possi-
ble value, and the set pickRoutesgb is emptied. Then, the number of cataclysms
is incremented and the counter variable consIterWoImpr is reset to 0. After the
main loop terminates, the global-best pick routes pickRoutesgb of the last iter-
ation are included in the set pickRoutescataclysm and the algorithm returns the
Pareto-optimal pick routes in this set.

6.7 ACO3 Variant

In the following, we introduce two variants of our algorithm that show a distinct
pheromone handling. Both variants are inspired by [1] that propose four differ-
ent variants to handle multi-objective problems with an ACO. We select the two

Optimizing Processes in Mezzanine Warehouses 21

Algorithm 2: Proposed ACO Algorithm.

Input: warehouseState, pickList
Parameter: maxIterWoImpr, maxCataclysms, maxIter
Output: pickRoutes

1 graph = constructGraph()
2 pheromones = initializePheromones()
3 while cataclysms < maxCataclysms || iter < maxIter do
4 iter++
5 pickRoutes = constructPickRoutes()
6 pickRoutesib = selectParetoPickRoutes(pickRoutes)
7 pickRoutesmerged = pickRoutesib ∪ pickRoutesgb
8 nextPickRoutesgb = selectParetoPickRoutes(pickRoutesmerged)
9 updatePheromones()

10 if isParetoFrontImproved() then
11 pickRoutesgb = nextPickRoutesgb
12 consIterWoImpr = 0

13 else
14 consIterWoImpr++
15 if consIterWoImpr >= maxIterWoImpr then
16 pickRoutescataclysm = pickRoutescataclysm ∪ pickRoutesgb
17 resetPheromonesOnGlobalBestRoutes()
18 cataclysms++
19 consIterWoImpr = 0

20 pickRoutescataclysm = pickRoutescataclysm ∪ pickRoutesgb
21 return selectParetoOptimalPickRoutes(pickRoutescataclysm)

best performing variants (ACO3 and ACO4) and integrate them in our approach
to compare which variant produces the best results in our problem domain. This
section introduces the ACO3 variant that applies one ant colony using a single
pheromone matrix τ1 for optimizing both objectives simultaneously. In each con-
struction step, the probability of selecting an edge calculates as:

probkm,n =
(τ1

m,n)
α(ηkm,n)

β∑
u∈Uk

(τ1
m,n)α(ηkm,n)β

, where n ∈ Uk (8)

where probkm,n denotes the probability of ant k located at market m to select the
edge (m,n) leading to market n. τ1

m,n refers to the pheromone value of edge (m,n).

ηkm,n denotes the heuristic value (see Formula 6) that the ant associates with the
edge (m,n). The parameters α and β control the importance of the pheromone
values and heuristic values. Lastly, Uk represents the set of markets that ant k has
not visited yet.

When performing the pheromone update, the ACO3 variant rewards in 90%
of the time the iteration-best pick routes and in 10% of the time, the global-best
pick routes (found since the last cataclysm) to update the pheromone matrix τ1.
The pheromone values are updated according to the following rule [1]:

τ1
m,n = (1− ρ) · τ1

m,n +∆τ1
m,n (9)

∆τ1
m,n =

{
1, if (m,n) belongs to a pick route in PF

0, otherwise
(10)

22 Veronika Lesch et al.

where ρ refers to the evaporation factor and ∆τ1
m,n is the amount of pheromone

that is added to the edge (m,n). PF refers to the Pareto front containing the
solutions to be rewarded.

6.8 ACO4 Variant

The ACO4 variant also applies one ant colony but a pheromone matrix τ1 for
optimizing the first objective function, and another pheromone matrix τ2 for opti-
mizing the second objective function. When deciding which edge to explore next,
an ant randomly chooses a pheromone matrix. In each construction step, the prob-
ability of selecting an edge calculates as [1]:

pkm,n =
(τ i

m,n)
α(ηkm,n)

β∑
u∈Uk

(τ i
m,n)α(ηkm,n)β

, where n ∈ Uk and i ∈ {1, 2} (11)

where τr
m,n refers to the pheromone value of edge (m,n) w.r.t. pheromone matrix

τ i. At the end of an iteration, the ACO4 variant updates the pheromone matrix
τ i by rewarding the iteration-best pick route PRi

ib that minimizes the objective
function ofi [1]:

τ i
m,n = (1− ρ) · τ i

m,n +∆τ i
m,n (12)

∆τ i
m,n =


1

1+ofi(PRi
ib)−ofi(PRi

gb)
, if (m,n) belongs to the pick route PRi

ib

0, otherwise

(13)
where ρ again refers to the evaporation factor and ∆τ i

m,n is the pheromone added
to the edge (m,n) in pheromone matrix τ i. PRi

gb refers to the global-best pick
route that minimizes the ith objective function of all pick routes constructed since
the last cataclysm occurred.

7 Evaluation

This section presents the evaluation of our approaches. It defines the used ware-
house models for applying our algorithms, presents performance indicators, sum-
marizes alternative policies to which we compare our algorithms, and provides
the parameter settings of our algorithms. Afterwards, we first evaluate our stor-
age assignment and order picking algorithms individually before we evaluate the
interaction of both algorithms.

7.1 Mezzanine Warehouse Models

The NSGA-II and the ACO algorithm are evaluated in three artificial mezza-
nine warehouses of different sizes that are defined in cooperation with our co-
operation company to build real-world test cases. The warehouses are shown in
Figure 10: WHsmall (yellow), WHmedium (orange), and WHlarge (red). For the
small, medium, and large warehouses, we define the size of the product assortment
to be 500, 1000, and 1500, respectively. Since each product requires a weight, we

Optimizing Processes in Mezzanine Warehouses 23

define three normal distributions and a probability to determine the weight using
this distribution: 25% to use N (2, 1.02), 50% to use N (5, 2.02), and 25% to use
N (8, 1.02). Using these distributions and probabilities, we aim at a representative
set of product weights where most of the products have a medium weight and some
products have low and some have heavy weights. The products might also have
correlations to up to three other products: With a probability of 30%, 40%, 20%,
and 10% a product has no, one, two, or three correlated products, respectively,
with a randomly generated correlation confidence between 10% and 90%. For eval-
uating the order picking algorithm, we fill the storage up to 50% of the available
storage space and randomly generate 100 customer orders based on the product
assortment and given correlations between products. Each customer order com-
prises 20 items to pick that are selected as follows: We split the product assortment
into four equally sized groups based on the product rank. With a probability of
40%, 30%, 20%, and 10% an order contains an item of the highest, second highest,
third highest, and lowest rank class, respectively, which ensures that high-ranked
products appear more often in customer orders.

Fig. 10: The warehouses WHsmall,WHmedium, and WHlarge use different floor
layouts.

7.2 Performance Indicators for Assessing Pareto Fronts

Since we assess a multi-objective optimization problem, the algorithms compute a
Pareto front. We use the following quality indicators for Pareto fronts introduced
by [31]. The Coverage (Cov) quality indicator quantifies the extent to which a
computed Pareto front covers the reference Pareto front. The quality indicators
Generational Distance (GD) and Euclidean Distance (ED) measure the distance
from a computed Pareto front to a reference Pareto front or a reference solution.
The quality indicators Pareto Front Size (PFS) and Generated Spread (GS) mea-
sure the diversity of the solutions that exist in a computed Pareto front. Finally,
the quality indicator Inverted Generational Distance (IGD) combines convergence
and diversity aspects. Since most of these quality indicators require the calculation
of a reference Pareto front, we use the Pareto fronts returned by all algorithms

24 Veronika Lesch et al.

as basis. From these Pareto fronts, we select the non-dominated solutions of the
union of all computed Pareto fronts and use this front as reference Pareto front.

7.3 Alternative Policies

We use the following alternative policies for the storage assignment problem. The
random storage assignment policy allocates the incoming items to random
racks on the floors in clusters of target quantity size [2]. In the closest open lo-
cation storage assignment policy, the warehouse employees select the storage
locations for storing an incoming product, which are usually the racks closest to
the p/d-points [13]. The rank-based storage assignment policy assigns fast-
moving products close to the p/d-points, while slow-moving products are assigned
to racks further away [24].

For the order picking problem, we apply a modified S-Shape heuristic for
comparison that constructs s-shaped pick routes based on the graph represen-
tation [22]. This heuristic uses all markets as starting point iteratively as well as
the reversed versions of each route to generate a Pareto front of possible solutions.

7.4 Algorithm Parameter Settings

Based on a preliminary parameter study, we parameterize our NSGA-II algo-
rithm as follows: We set the mutation probability to 0.95 for all warehouse sizes
so that the mutation operators are applied very frequently. Additionally, we set
the crossover probability to 1.00 so that the crossover operator is applied for
all generations. Further, we define parameters dependent on the warehouse size
(small/medium/large): The parent population size is set to (50/60/70), and the
maximum number of generations to (200/250/300). These values increase with
the size of the warehouse since the number of possible solutions increases with the
warehouse size and we provide the algorithm more exploration possibilities (pop-
ulation size) and more time (number of generations) for optimizing the solutions.

Further, we set the parameters for our ACO algorithm as follows: In line with
the literature, we set the pheromone factor α to 1.0 and the heuristic factor β
to 2.0. We set the evaporation factor ρ to 0.02 causing the pheromones to evap-
orate rather slowly which enables the algorithm to achieve a higher degree of
exploration especially in the early stages. The min/max values for the pheromone
matrices (τmin/max) are set to 1 and 25, respectively, add a floor change penalty of
50, and set the allowed weight difference to 3 kg. As stopping criterion, we set the
maximum number of cataclysms to 3 and hence, the algorithm terminates after
it became stuck for the third time. Using the results of a preliminary parameter
study, we set the maximum consecutive iterations without improvements to 20,
and the maximum iterations to 250 since these values yield the best results w.r.t
the scores.

7.5 Evaluation of the NSGA-II Algorithm for Storage Assignment Tasks

We evaluate our NSGA-II algorithm against the random, closest open location,
and rank-based storage assignment policies. We apply all approaches on the three

Optimizing Processes in Mezzanine Warehouses 25

Table 3: Mean values of the six quality indicators achieved by the storage assign-
ment algorithms in Setting 1.a, 1.b, and 1.c (best values are shown in bold).

Setting Policy Cov [µ] GD [µ] ED [µ] PFS [µ] GS [µ] IGD [µ]

1.a

Random 0.01 1.59 25.33 24.80 0.73 2.26
Closest 0.01 2.14 28.37 21.98 0.74 2.53
Rank 0.09 0.95 21.88 28.20 0.78 2.53
NSGA-2 0.90 0.04 16.48 47.52 0.50 0.26

1.b

Random 0.01 2.38 26.20 16.80 0.75 1.92
Closest 0.00 3.32 31.28 14.82 0.73 2.18
Rank 0.06 1.68 22.03 19.44 0.83 2.13
NSGA-2 0.93 0.02 14.01 52.84 1.04 0.11

1.c

Random 0.00 2.78 29.47 9.92 0.81 1.86
Closest 0.00 3.11 28.58 11.08 0.86 2.10
Rank 0.01 1.40 25.23 14.24 0.94 1.92
NSGA-2 0.99 0.00 16.76 64.34 1.37 0.02

warehouse sizes (Setting 1.a, 1.b, 1.c) and on five randomly generated storage
assignment tasks, i.e., we select a random product from the product assortment and
set the quantity to be assigned to the quantity already existing in the warehouse.
We repeat the execution of the NSGA-II algorithm ten times to reduce random
effects and present mean and standard deviation values. All generated solutions
of all algorithms are then used to calculate the reference Pareto front required for
the quality indicators. Table 3 summarizes the mean values and Table 4 shows
the standard deviation values for this evaluation. The coverage (Cov) results for
the small warehouse show that the NSGA-II Pareto front covers about 90% of
the reference Pareto front while the other approaches cover only around 9% and
1% Since, the NSGA-II shows the lowest GD and ED values, this Pareto front
is located closest to the reference front. The NSGA-II algorithm finds around 48
solutions per problem instance with a maximum possible value of 50 solutions for
the small warehouse size. The other policies only construct 22 to 28 Pareto-optimal
solutions while their maximum possible value is set to 500. Further, the NSGA-II
achieves the lowest GS and IGD values which indicates, that the solutions converge
well towards the reference Pareto front and offer diverse solutions.

In the medium warehouse, the results show similar behavior. The table shows
that the Pareto front PFnsga2(cm) covers approximately 93% of the reference
Pareto front PFref . Except for some outliers, the alternative policies struggle
to cover the solutions in PFref . The observed GD and ED values are fairly similar
to the values in Setting 1.a. However, the standard deviations of the ED metric
increased noticeably, which may be related to the larger search space where the so-
lutions tend to be more spread out. Nevertheless, the Pareto front PFnsga2(cm) still
achieves the lowest GD and ED values, indicating that this Pareto front converges
best towards PFref . Concerning the PFS metric, the NSGA-II algorithm finds
about 53 solutions per problem instance, while the alternative policies find approx-
imately less than 20 solutions per problem instance. The GS values of PFnsga2(cm)

increased remarkably, which may be due to the larger parent population size and
the larger search space that make it difficult for the NSGA-II algorithm to fill the
gaps in the Pareto front so that all solutions are evenly distributed. Lastly, the

26 Veronika Lesch et al.

Table 4: Standard deviations of the six quality indicators achieved by the storage
assignment algorithms in Setting 1.a, 1.b, and 1.c.

Setting Policy Cov [σ] GD [σ] ED [σ] PFS [σ] GS [σ] IGD [σ]

1.a

Random 0.01 0.78 10.20 11.52 0.16 1.91
Closest 0.01 1.26 12.29 9.49 0.19 1.71
Rank 0.09 0.44 10.66 14.98 0.21 1.99
NSGA-2 0.10 0.08 7.93 5.35 0.17 0.26

1.b

Random 0.02 1.21 15.20 13.29 0.13 0.96
Closest 0.01 1.74 18.95 9.84 0.08 0.95
Rank 0.12 1.14 13.53 19.53 0.18 1.13
NSGA-2 0.14 0.05 9.38 9.46 0.54 0.20

1.c

Random 0.00 2.34 26.32 4.89 0.13 1.81
Closest 0.00 3.55 26.45 7.49 0.16 2.17
Rank 0.01 1.39 23.91 6.79 0.17 2.12
NSGA-2 0.01 0.00 14.06 9.60 0.45 0.06

IGD values of PFnsga2(cm) are close to 0, indicating that PFnsga2(cm) represents
the entire reference Pareto front PFref in most cases.

Similarly, the large warehouse shows comparable results. The Pareto front
PFnsga2(cl) covers about 99% of the reference Pareto front PFref , while PFrank

covers only 1%. Thus, almost all solutions found by the rank-based policy are dom-
inated by the solutions found by the NSGA-II algorithm. The mean GD value of
PFnsga2(cl) equals 0, indicating that the entire Pareto front PFnsga2(cl) is part of
PFref in almost all cases. Other than that, the observations made in the previous
Setting 1.b also occur in this setting. Thus, the standard deviations of the ED
metric further increase, the NSGA-II algorithm finds the most solutions per prob-
lem instance, the alternative policies find fewer solutions per problem instances,
the GS values of PFnsga2(cl) further increase, and the IGD values PFnsga2(cm) are
closer to 0.

In summary, the results show that the random and the closest open location
policy struggle to cover even a single solution in the reference Pareto front. Ad-
ditionally, the NSGA-II algorithm outperforms the alternative policies in smaller
warehouses. Further, the NSGA-II finds on average the most solutions per problem
instance and the solutions are less equally distributed.

In addition to the quality evaluation, we also measure the mean execution time
of the approaches for solving 50 problem instances in each warehouse size1. The
alternative policies achieve low execution times of about 0.17/0.30/0.50 seconds
for small/medium/large which is due to their comparably simple operation. In the
warehouse small/medium/large, the NSGA-II algorithm achieves execution times
of about 2/6/15 seconds, which is due to the increase population and iteration
count for larger warehouses. The execution times of the NSGA-II algorithm may be
considered acceptable, as the algorithm requires only a few seconds to find storage
allocations that are remarkably better than the ones found by the alternative
policies.

1 We run our experiments on a MacBook Pro using macOS Sierra 10.12.6, a 2.2GHz Intel
Core i7 CPU and 16GB DDR3 RAM.

Optimizing Processes in Mezzanine Warehouses 27

Table 5: Mean values of the six quality indicators achieved by the order picking
algorithms in Setting 2.a, 2.b, and 2.c (best values are shown in bold).

Setting Policy Cov [µ] GD [µ] ED [µ] PFS [µ] GS [µ] IGD [µ]

2.a
sShape 0.00 22.15 80.34 2.80 0.84 18.28
ACO3 0.73 1.40 32.03 10.66 0.99 2.74
ACO4 0.74 1.59 32.07 9.54 0.87 1.91

2.b

sShape 0.00 31.20 117.42 3.60 0.72 18.78
ACO3 0.69 1.97 50.11 12.14 0.81 3.00
ACO4 0.33 4.30 54.59 11.30 0.66 4.15

2.c
sShape 0.00 41.41 121.35 2.00 0.88 27.18
ACO3 0.84 1.56 56.75 10.50 0.74 5.64
ACO4 0.16 9.78 70.02 10.14 0.68 7.28

Table 6: Standard deviations of the six quality indicators achieved by the order
picking algorithms in Setting 2.a, 2.b, and 2.c.

Setting Policy Cov [σ] GD [σ] ED [σ] PFS [σ] GS [σ] IGD [σ]

2.a
sShape 0.00 14.20 28.26 1.60 0.16 6.55
ACO3 0.13 1.91 16.21 5.63 0.36 2.96
ACO4 0.18 2.64 16.14 3.97 0.35 2.52

2.b

sShape 0.00 6.92 34.51 1.02 0.12 5.03
ACO3 0.15 2.08 15.74 3.80 0.20 2.67
ACO4 0.16 3.62 14.43 3.23 0.17 2.68

2.c
sShape 0.00 16.42 35.71 0.89 0.14 6.95
ACO3 0.11 2.90 18.95 2.87 0.23 6.27
ACO4 0.11 5.83 21.76 3.28 0.21 3.91

7.6 Evaluation of the ACO Algorithm for Order Picking Tasks

We evaluate both versions of our ACO algorithm against the modified S-Shape
heuristic. We apply all approaches on the three warehouse sizes (Settings 2.a, 2.b,
2.c) using five customer orders randomly selected from the set of generated cus-
tomer orders as explained earlier and repeat the execution of the ACO algorithms
ten times to reduce random effects and present mean and standard deviation val-
ues. Then, we use all generated solutions the algorithms to calculate the reference
Pareto front required for the quality indicators. Table 5 summarizes the mean val-
ues and Table 6 shows the standard deviation values for this evaluation. For the
small warehouse, the Pareto fronts of the ACO3 and ACO4 variants cover 74% of
the reference Pareto front while the S-Shape heuristic fails to cover even a single
solution. Both ACO algorithms achieve nearly the same GD and ED values and
the close to zero GD values show that many solutions are part of the reference
front. The ACO algorithms find around ten solutions per problem instance, while
the S-Shape only finds three solutions per problem instance. The S-Shape achieves
the lowest, hence, the best GS values, but it is not meaningful to compare these
values to the ACO ones as it contains only three solutions that are considerably
worse than solutions of the ACO algorithms. The ACO algorithms achieve low IGD
values, indicating that both Pareto fronts converge well towards the reference front
and provide diverse solutions.

28 Veronika Lesch et al.

The metrics of the medium warehouse show similar behavior as in the previous
setting. Like in the previous setting, the Pareto front PFsShape fails to cover even a
single solution in the reference Pareto front PFref . The Pareto front PFaco3 covers
approximately 69% of PFref , while PFaco4 covers only 33%. Thus, the ACO3

variant tends to find better pick routes than the ACO4 variant. The Pareto front
PFaco3 achieves the lowest GD and ED values among all computed Pareto fronts.
Thus, PFaco3 converges best towards PFref , which is not surprising, as PFaco3

covers most of the solutions in PFref . The GD and ED values of PFaco4 are slightly
larger than the ones of PFaco3 , indicating that PFaco4 does not converge as well as
PFaco3 towards PFref . Compared to the previous setting, the GD and ED values
of PFsShape increased, which may be due to the larger search space. Concerning
the PFS metric, the ACO3 variant finds about 12 solutions per problem instance,
followed closely by the ACO4 variant that finds around 11 solutions per problem
instance, while the S-Shape heuristic only finds about 4 solutions per problem
instance. Regarding the GS metric, the solutions in PFaco4 are slightly better
distributed than the solutions in PFaco3 . With respect to the IGD metric, PFaco3

achieves the lowest IGD values, indicating that PFaco3 converges well towards
PFref and offers a high diversity of solutions.

In the large warehouse, the S-Shape heuristic is again unable to cover a solu-
tion in PFref . The Pareto front PFaco3 covers 84% of the reference Pareto front
PFref , while PFaco4 covers only 16%. Thus, most of the solutions found by the
ACO4 variant are dominated by the solutions found by the ACO3 variant. Accord-
ingly, the ACO4 variant has problems to compete with the ACO3 variant in larger
warehouses. Compared to the previous setting, the GD and ED values of PFaco4

further increased, indicating that the distances between the solutions in PFaco4

and the solutions in PFref became larger. The Pareto front PFaco3 converges best
towards PFref , as it achieves the lowest GD and ED values. Regarding the PFS
metric, both ACO variants find about 10 solutions per problem instance. The GS
metric indicates that the solutions in PFaco4 are marginally better distributed
than the solutions in PFaco3 . Finally, the Pareto front PFaco3 achieves the lowest,
and thus, best IGD values, signalizing that PFaco3 converges best towards PFref

and offers diverse solutions.

In summary, the ACO algorithms outperform the S-Shape heuristic in all ware-
house sizes, and ACO3 and ACO4 show similar performance in smaller warehouses.
With increasing warehouse size, the solutions found by the ACO3 variant dom-
inate more and more solutions of the ACO4 variant. Hence, the ACO3 variant
starts to find better pick routes than the ACO4 variant, while the ACO4 variant
produces slightly better distributed solutions.

In addition to the quality evaluation, we also measure the mean execution time
of the approaches for solving 50 problem instances in each warehouse size. The
S-Shape heuristics takes around 0.15 seconds to compute routes. The ACO3 and
the ACO4 variant achieve fairly the same execution times in all warehouse sizes of
around 1/3/6 seconds for WHsmall/WHmedium/WHlarge. As the warehouse size
increases, the graph consists of more markets causing more ants to be deployed
in each iteration. Still, we consider the ACO execution times acceptable, as they
require only a few seconds to find noticeably better pick routes.

Optimizing Processes in Mezzanine Warehouses 29

7.7 Evaluation of Computational Costs

Besides evaluating the performance of the proposed algorithms in terms of solution
quality, we also measured execution times and evaluated the computational costs.
The experiments were conducted on a MacBook Pro with a 2.2GHz Intel Core i7
processor, 16GB of RAM, and macOS Sierra 10.12.6. Each time measurement was
repeated 50 times. Table 7 and Table 8 report the mean and standard deviation
for the initialization and execution phases in seconds.

Table 7: Mean initialization times of the storage assignment algorithms in seconds.

WHsmall WHmedium WHlarge

Algorithm µ σ µ σ µ σ

Order Picking 63.86 1.40 122.95 2.48 195.95 4.25

Storage Assignment 5.15 1.42 6.32 1.50 8.15 1.05

Table 7 shows the initialization times for the storage assignment and order
picking algorithms. The initialization time increases with the warehouse size as
more data must be requested from the database. However, the measured initial-
ization times must be analyzed with caution, as the initialization time depends
more on the size of the database tables than on the warehouse’s size. Initialization
times for the order picking algorithms are much higher due to the graph construc-
tion, which makes the initialization time proportional to the number of markets.
This also indicates that tuning the SQL queries would only partly enhance the ini-
tialization time of the order picking but could have a more significant impact on
the order picking. The graph construction could be parallelized further to increase
the initialization time for order picking, as no data dependencies exist between the
markets.

Table 8: Mean execution times of the order picking algorithms in seconds.

WHsmall WHmedium WHlarge

Algorithm µ σ µ σ µ σ

Storage Assignment: sShape 0.14 0.02 0.15 0.03 0.15 0.03
Storage Assignment: aco3 1.11 0.34 2.75 0.33 5.98 0.82
Storage Assignment: aco4 1.08 0.14 2.86 0.32 6.23 0.77

Order Picking: random 0.18 0.10 0.29 0.13 0.47 0.22
Order Picking: closest 0.17 0.07 0.33 0.13 0.55 0.25
Order Picking: rank 0.16 0.06 0.30 0.09 0.47 0.13
Order Picking: nsga2(cs/cm/cl) 2.23 0.40 6.22 0.75 15.42 1.10

Table 8 shows the execution times for the proposed algorithms as well as the
execution time of the baselines. For storage assignment, alternative policies achieve
low execution times of up to 0.5 seconds, which is not surprising, as they require
only a few calculation steps to assign the incoming items to racks on the floor.

30 Veronika Lesch et al.

Table 9: Mean values of the six quality indicators achieved by the combination of
storage assignment and order picking algorithm in Setting 3 to 5 (best values are
shown in bold).

Setting Policy Cov [µ] GD [µ] ED [µ] PFS [µ] GS [µ] IGD [µ]

3.a
Random, ACO3 0.00 60.32 215.43 9.96 0.97 56.49
NSGA-2, ACO3 1.00 0.00 22.62 12.20 1.12 0.00

3.b
Random, ACO3 0.00 38.37 168.05 13.76 0.91 38.85
NSGA-2, ACO3 1.00 0.00 36.65 12.12 0.96 0.00

3.c
Random, ACO3 0.00 50.06 213.69 13.96 0.90 51.35
NSGA-2, ACO3 1.00 0.00 32.78 12.02 0.87 0.00

4.a
Random, ACO4 0.00 54.03 165.75 8.14 0.93 46.16
NSGA-2, ACO4 1.00 0.00 25.08 10.26 0.96 0.00

4.b
Random, ACO4 0.01 44.61 198.83 11.82 0.86 48.94
NSGA-2, ACO4 0.99 0.12 35.65 11.10 0.71 0.21

4.c
Random, ACO4 0.00 51.19 207.95 12.04 0.85 52.91
NSGA-2, ACO4 1.00 0.00 38.08 10.04 0.71 0.03

5.a
NSGA-2, ACO3 0.80 1.43 25.30 10.26 0.99 1.38
NSGA-2, ACO4 0.66 1.52 26.58 9.32 0.88 0.98

5.b
NSGA-2, ACO3 0.69 1.40 21.37 9.84 0.94 3.53
NSGA-2, ACO4 0.41 3.83 22.85 8.14 0.79 3.13

5.c
NSGA-2, ACO3 0.79 1.92 33.80 9.16 0.81 3.11
NSGA-2, ACO4 0.22 8.69 43.25 9.18 0.66 5.71

The NSGA-II algorithm needs more time to compute the storage allocations and
requires up to 15 seconds for the large warehouse. However, the execution times of
the NSGA-II algorithm may be considered acceptable, as the algorithm requires
only a few seconds to find storage allocations that are remarkably better than the
ones found by the alternative policies.

For order picking, the alternative S-Shape heuristic requires 0.15 regardless of
warehouse size. The AC03 and the AC04 achieve fairly the same execution times
across the different warehouse sizes, with approximately six seconds for the largest.
The execution time increases with the warehouse size since the graph consists of
more markets, causing more ants to be deployed in each iteration. Considering the
noticeably better routes compared to the S-Shape heuristic, the execution time of
a few seconds to find a picking route may be considered acceptable.

7.8 Evaluation of the Interaction between NSGA-II and ACO Algorithm

In the previous section, we have shown the applicability of our algorithms for
storage assignment and order picking in dedicated analyses. The results indicate
that both algorithms outperform state-of-the-art solutions for those tasks. In this
section, we evaluate the interaction between our proposed algorithms by assess-
ing them in three settings: Section 7.8.1 determines whether the ACO3 performs
better on the NSGA-II planned warehouse compared to the random warehouse;
Section 7.8.2 performs a similar assessment for the ACO4; Section 7.8.3 evalu-
ates whether the ACO3 or the ACO4 perform better on the NSGA-II planned
warehouse. Tables 9 and 10 summarize the results.

Optimizing Processes in Mezzanine Warehouses 31

Table 10: Standard deviations of the six quality indicators achieved by the com-
bination of storage assignment and order picking algorithm in Setting 3 to 5.

Setting Policy Cov [σ] GD [σ] ED [σ] PFS [σ] GS [σ] IGD [σ]

3.a
Random, ACO3 0.00 22.94 62.38 4.10 0.06 22.96
NSGA-2, ACO3 0.00 0.00 7.51 6.17 0.35 0.00

3.b
Random, ACO3 0.00 13.66 35.09 3.88 0.07 14.41
NSGA-2, ACO3 0.00 0.00 16.50 4.18 0.36 0.00

3.c
Random, ACO3 0.00 14.03 54.74 3.56 0.07 17.53
NSGA-2, ACO3 0.00 0.00 8.19 5.40 0.32 0.00

4.a
Random, ACO4 0.00 18.52 73.60 3.69 0.10 26.01
NSGA-2, ACO4 0.00 0.00 8.71 3.65 0.31 0.00

4.b
Random, ACO4 0.03 15.52 62.11 2.96 0.09 22.17
NSGA-2, ACO4 0.03 0.57 22.53 4.20 0.28 0.77

4.c
Random, ACO4 0.01 21.77 68.40 3.55 0.08 26.20
NSGA-2, ACO4 0.01 0.00 12.91 3.82 0.28 0.22

5.a
NSGA-2, ACO3 0.15 2.70 6.61 4.74 0.20 1.93
NSGA-2, ACO4 0.20 2.11 7.98 3.72 0.20 0.93

5.b
NSGA-2, ACO3 0.16 1.74 4.58 3.43 0.25 3.46
NSGA-2, ACO4 0.16 5.59 4.58 1.90 0.22 3.48

5.c
NSGA-2, ACO3 0.14 3.81 12.68 3.28 0.25 4.40
NSGA-2, ACO4 0.14 6.32 17.01 3.54 0.18 3.54

7.8.1 Comparison of NSGA-II and Random Planned Warehouses for ACO3

In this setting, we apply the ACO3 algorithm on all warehouse sizes (Setting 3.a,
3.b, 3.c) twice: once for the warehouse that used the NSGA-II algorithm for storage
assignment and once for the randomly assigned warehouse. Again, we select five
random items from the product assortment and set the amount to assign to the
already existing amount inside the warehouse. In the small warehouse, the Pareto
front of the NSGA-II planned warehouse covers the entire reference front while the
random planned warehouse does not cover a single solution in the reference front,
hence, the GD and IGD values of the NSGA-II planned warehouse are 0 and the
ED values are minimal. The high GD and ED values of the random planned ware-
house indicate that its Pareto front does not converge well towards the reference
front. Thus, the solutions found in the random warehouse are considerably worse
than the solutions found in the NSGA-II warehouse. In the medium warehouse,
the Pareto fronts of random and NSGA-II planned warehouses achieve fairly the
same quality indicator values as in the previous setting. However, the GD and ED
metric indicate that the results for the random warehouse unexpectedly converge
better towards the reference front than in Setting 3.a. This could be due to the lim-
ited amount of executed problem instances and needs to be further assessed with a
higher number of problem instances. Nevertheless, the Pareto front of the random
warehouse is still far from converging towards reference front. In the large ware-
house, the same observations can be made as in the previous settings, underlining
that the ACO3 variant finds better pick routes in the NSGA-II warehouse than in
the random warehouse. In summary, the evaluation results show that the NSGA-
II algorithm and the ACO3 variant interact well together and the ACO3 variant
profits from the NSGA-II algorithm that ensures our four economic constraints.

32 Veronika Lesch et al.

7.8.2 Comparison of NSGA-II and Random Planned Warehouses for ACO4

This setting repeats the Settings 3.a to 3.c for the ACO4 algorithm. We now dis-
cuss the results for the Settings 4.a to 4.c. In the small warehouse, the Pareto
front of the NSGA-II warehouse covers the entire reference Pareto front and the
random warehouse fails to cover a single solution. Thus, all solutions found in
the random warehouse are dominated by the solutions of the NSGA-II warehouse.
The GD and ED values for the random warehouse are higher than the ones of the
NSGA-II warehouse which shows that the Pareto front of the random warehouse
is further away from the reference front. Hence, the solutions of the random ware-
house are noticeably worse than the solutions found in the NSGA-II warehouse.
In the medium warehouse, the Pareto front of the NSGA-II warehouse does not
always cover the entire reference front, while the random warehouse covers at least
one solution in the reference front in 7 of 50 repetitions. Thus, the ACO4 variant
occasionally finds a few solutions in the random warehouse that are comparable
with the solutions found in the NSGA-II warehouse. Despite these few outliers,
the results show a similar behavior as in the previous setting. Similar to the previ-
ous settings, the evaluation in the large warehouse show comparable results. The
NSGA-II warehouse covers all solutions in the reference front in 49 of 50 repe-
titions and the random warehouse manages to cover at least one solution in the
reference front. In summary, the results show that the ACO4 variant also finds
better pick routes if the warehouse applies the NSGA-II storage strategy and both
algorithms interact well with each other.

7.8.3 Comparison of ACO3 and ACO4 on NSGA-II Planned Warehouses

This section investigates which ACO variant performs better if the warehouse
applies the NSGA-II storage strategy. Both variants are applied on five randomly
selected customer orders on all warehouse sizes (Settings 5.a, 5.b, 5.c). In the small
warehouse, the Pareto front of the ACO3 algorithm covers approximately 80% of
the reference front, while ACO4 covers only 66%. Both ACO variants converge
well towards the reference front as indicated by the low GD and ED values and
find approximately ten solutions per problem instance, and IGD values of both
fronts are almost the same. However, the GS values indicate, that the solutions
of the ACO4 variant have a better distribution than the ones of ACO3. In the
medium warehouse, the Pareto front of ACO3 covers approximately 69% of the
reference front, while the one from ACO4 covers only 41%, and thus, the solutions
found by ACO4 tend to be dominated by the ones from ACO3. The GD and ED
metric indicate that the ACO3 Pareto front converges better towards the reference
front. Similar to the small warehouse, the GS indicate, that solutions of the ACO4

Pareto front are better distributed. In the large warehouse, the ACO3 dominates
ACO4 even more with regards to the coverage metric. Furthermore, the GD and
ED values of ACO4 increased, indicating that the distance between the solutions
in ACO4 Pareto front and the solutions in the reference front become larger.
Again, the solutions in the ACO4 Pareto front have a slightly better distribution
than the solutions in the ACO3 Pareto front. However, this time, ACO3 achieves
better IGD values, as ACO3 covers large parts of the reference front. In summary,
we can state that with increasing warehouse size, the ACO3 variant finds better
pick routes than the ACO4 variant while both variants find approximately the

Optimizing Processes in Mezzanine Warehouses 33

same number of solutions per problem instance. However, the solutions found by
the ACO4 variant are slightly better distributed than the ones from the ACO3

variant.

7.9 Threats to Validity

We identified the following threats to validity of our evaluation. First, the NSGA-
II and ACO algorithms are evaluated in three mezzanine warehouses of differ-
ent sizes. However, real-world mezzanine warehouses may consist of more floors,
blocks, pick aisles, and racks than specified in the warehouses used for evaluation.
Nevertheless, we are convinced that our defined warehouses form a representative
set for mezzanine warehouses and can easily be extended for further evaluation
runs. Second, since the algorithms are evaluated in warehouses that apply either
the random or the NSGA-II storage strategy, the evaluation results may not be
transferable to warehouses that apply different storage strategies. Even though
the product assortment, the product correlations, the customer orders, and the
storage allocations are randomly generated reflecting specific characteristics of
real-world mezzanine warehouses, the proposed algorithms are easily transferable
to real application data. Third, we decided to compare the ACO algorithm only
to one order picking policy. This decision was made in awareness of the limited
expressiveness of our results but was necessary as the majority of policies in the
literature violate assumptions made in this work. Finally, we only evaluate our
NSGA-II and ACO algorithms against heuristic policies. Hence, they also should
be evaluated against other optimization methods like other evolutionary optimiza-
tion algorithms or graph-based optimization techniques. However, we decided to
do this evaluations as future work. Additionally, we performed less than 30 runs
for each setting due to the complexity and runtime of the runs. Obviously, 30 runs
and more might result in more stable and reliable results. However, the report
the standard deviations. As those are pretty low, we assume that the results are
already stable.

8 Conclusion

Due to the complexity of the storage assignment and the order picking prob-
lem, efficient optimization algorithms are required to find satisfactory solutions
within reasonable times. This paper proposes an NSGA-II algorithm for optimizing
the storage assignment problem, and an ACO algorithm for optimizing the order
picking problem in mezzanine warehouses. The algorithms incorporate knowledge
about the interdependency between both problems to improve the overall ware-
house performance. Besides optimizing economic constraints, the algorithms also
optimize ergonomic criteria, as mezzanine warehouses represent labor-intensive
working environments in which the employees account for a large part of the
warehouse performance. We evaluate the NSGA-II algorithm against three stor-
age assignment policies frequently applied in practice: the random, the closest open
location, and the rank-based policy. The evaluation results show that the NSGA-
II algorithm outperforms the alternatives already in smaller warehouses and the

34 Veronika Lesch et al.

larger the warehouse, the better the NSGA-II algorithm prevails against the alter-
native policies. We evaluate the ACO algorithm against the S-Shape heuristic that
is frequently applied in practice. Our evaluation results show that the ACO out-
performs the S-Shape heuristic in all tested warehouse sizes. Finally, we evaluate
the interaction between the NSGA-II and the ACO algorithm. The evaluation re-
sults show that both ACO variants find better pick routes if the warehouse assigns
its products by applying the NSGA-II algorithm instead of the random storage
strategy, thus, the NSGA-II and the ACO algorithm interact well with each other.

In the future, we plan to integrate additional features to further increase the
applicability of the storage assignment. First, we want to allow state changes of
the mezzanine warehouses while the storage assignment is running which would
make some of the solutions in the Pareto front infeasible. Further, we plan to
parallelize the storage assignment algorithm so that the sequential assignment
of products is replaced and the execution times will decrease. Regarding the or-
der picking algorithm, we also aim at parallelizing the execution to reduce the
required calculation times. Finally, we want to research on integrating forecasts
(e.g., based on our previous work [33]) of future assignment and order picking
tasks to proactively replace goods within the storage that will be ordered in the
near future. Aditionally, a promising option can be to study further algorithms
for optimization and different parameter setting. On the one hand, one option is
to analyze additional optimization techniques. For example, some multi-objetive
evolutionay algorithms with great performance have been reported recently, such
as, Multi-strategy co-evolutionary differential evolution for mixed-variable opti-
mization, firefly algorithms with courtship learning, or multi-objective artificial
bee colony algorithms. However, those algorithms were applied in different do-
mains. Still, it would be interesting as future work to analyze them in our target
domain. On the other hand, we showed In previous work that choosing the best
optimization algorithm is situation-aware [18] and, hence, requires to be modeled
as a self-adaptive system [15]. Implementing such an approach could also help to
identify the best fitting algorithms for a new warehouse design.

References

1. Alaya, I., Solnon, C., Ghedira, K.: Ant Colony Optimization for Multi-Objective Op-
timization Problems. In: 19th IEEE International Conference on Tools with Artificial
Intelligence(ICTAI 2007), vol. 1, pp. 450–457 (2007)

2. Bartholdi III, J.J., Hackman, S.T.: Warehouse and Distribution Science. Supply Chain
and Logistics Institute, School of Industrial and Systems Engineering, Georgia Institute
of Technology (2019)

3. Calzavara, M., Glock, C.H., Grosse, E.H., Sgarbossa, F.: An integrated storage assignment
method for manual order picking warehouses considering cost, workload and posture. Inter-
national Journal of Production Research 57(8), 2392–2408 (2019). DOI 10.1080/00207543.
2018.1518609. URL https://doi.org/10.1080/00207543.2018.1518609

4. Chen, F., Wang, H., Qi, C., Xie, Y.: An ant colony optimization routing algorithm for two
order pickers with congestion consideration. Computers & Industrial Engineering 66(1),
77–85 (2013)

5. Daniels, R.L., Rummel, J.L., Schantz, R.: A model for warehouse order picking. European
Journal of Operational Research 105(1), 1–17 (1998)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

https://doi.org/10.1080/00207543.2018.1518609

Optimizing Processes in Mezzanine Warehouses 35

7. Ene, S., Öztürk, N.: Storage location assignment and order picking optimization in the
automotive industry. The International Journal of Advanced Manufacturing Technology
60(5-8), 787–797 (2012)

8. van Gils, T., Ramaekers, K., Caris, A., de Koster, R.B.M.: Designing efficient order pick-
ing systems by combining planning problems: State-of-the-art classification and review.
European Journal of Operational Research 267, 1–15 (2018)

9. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and performance
evaluation: A comprehensive review. European Journal of Operational Research 203(3),
539–549 (2010)

10. Izquierdo, J., Campbell, E., Montalvo, I., Pérez-Garćıa, R.: Injecting problem-dependent
knowledge to improve evolutionary optimization search ability. Journal of Computational
and Applied Mathematics 291, 281–292 (2016)

11. Kofler, M., Beham, A., Wagner, S., Affenzeller, M., Reitinger, C.: Reassigning storage
locations in a warehouse to optimize the order picking process. In: Proceedings of the
22th European Modeling and Simulation Symposium, pp. 77–82 (2010)

12. de Koster, M.B.M.: Warehouse assessment in a single tour. In: Facility Logistics, pp.
53–74. Auerbach Publications (2007)

13. de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order
picking: A literature review. European Journal of Operational Research 182(2), 481–501
(2007)

14. Kovács, A.: Optimizing the storage assignment in a warehouse served by milkrun logistics.
International Journal of Production Economics 133(1), 312–318 (2011)

15. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A Survey on Engineering
Approaches for Self-Adaptive Systems. Pervasive and Mobile Computing Journal 17(Part
B), 184–206 (2015)

16. Lee, I.G., Chung, S.H., Yoon, S.W.: Two-stage storage assignment to minimize travel
time and congestion for warehouse order picking operations. Computers & Industrial
Engineering 139, 106129 (2020). DOI https://doi.org/10.1016/j.cie.2019.106129

17. Leng, J., Yan, D., Liu, Q., Zhang, H., Zhao, G., Wei, L., Zhang, D., Yu, A., Chen, X.:
Digital twin-driven joint optimisation of packing and storage assignment in large-scale
automated high-rise warehouse product-service system. International Journal of Computer
Integrated Manufacturing 34(7-8), 783–800 (2021)

18. Lesch, V., Noack, T., Hefter, J., Kounev, S., Krupitzer, C.: Towards situation-aware meta-
optimization of adaptation planning strategies. In: 2021 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 177–187 (2021).
DOI 10.1109/ACSOS52086.2021.00042

19. Li, M., Chen, X., Liu, C.: Pareto and niche genetic algorithm for storage location assign-
ment optimization problem. In: 3rd International Conference on Innovative Computing
Information and Control, pp. 465–465. IEEE (2008)

20. Manzini, R., Gamberi, M., Persona, A., Regattieri, A.: Design of a class based storage
picker to product order picking system. International Journal of Advanced Manufacturing
Technology 32, 811–821 (2007)

21. Mirzaei, M., Zaerpour, N., de Koster, R.B.: How to benefit from order data: correlated
dispersed storage assignment in robotic warehouses. International Journal of Production
Research 60(2), 549–568 (2022). DOI 10.1080/00207543.2021.1971787. URL https://
doi.org/10.1080/00207543.2021.1971787

22. Petersen, C.G.: An evaluation of order picking routeing policies. International Journal of
Operations & Production Management 17(11), 1098–1111 (1997)

23. Petersen, C.G., Siu, C., Heiser, D.R.: Improving order picking performance utilizing slot-
ting and golden zone storage. International Journal of Operations & Production Manage-
ment 25(10), 997–1012 (2005)

24. Petersen II, C.G., Schmenner, R.W.: An Evaluation of Routing and Volume-based Storage
Policies in an Order Picking Operation. Decision Sciences 30(2), 481–501 (1999)

25. Ratliff, H.D., Rosenthal, A.S.: Order-picking in a rectangular warehouse: a solvable case
of the traveling salesman problem. Operations Research 31(3), 507–521 (1983)

26. Roodbergen, K.J., de Koster, R.: Routing methods for warehouses with multiple cross
aisles. International Journal of Production Research 39(9), 1865–1883 (2001)

27. Shqair, M., Altarazi, S., Al-Shihabi, S.: A statistical study employing agent-based model-
ing to estimate the effects of different warehouse parameters on the distance traveled in
warehouses. Simulation Modelling Practice and Theory 49, 122–135 (2014)

https://doi.org/10.1080/00207543.2021.1971787
https://doi.org/10.1080/00207543.2021.1971787

36 Veronika Lesch et al.

28. Sooksaksun, N., Kachitvichyanukul, V., Gong, D.C.: A class-based storage warehouse de-
sign using a particle swarm optimisation algorithm. International Journal of Operational
Research 13(2), 219–237 (2012)

29. Vaughan, T.: The effect of warehouse cross aisles on order picking efficiency. International
Journal of Production Research 37(4), 881–897 (1999)

30. Wang, M., Zhang, R.Q., Fan, K.: Improving order-picking operation through efficient
storage location assignment: A new approach. Computers & Industrial Engineering 139,
106186 (2020). DOI https://doi.org/10.1016/j.cie.2019.106186

31. Wang, S., Ali, S., Yue, T., Li, Y., Liaaen, M.: A practical guide to select quality indicators
for assessing pareto-based search algorithms in search-based software engineering. In:
Proceedings of the 38th International Conference on Software Engineering, pp. 631–642
(2016)

32. Xing, B., Gao, W.J., Nelwamondo, F.V., Battle, K., Marwala, T.: Ant colony optimiza-
tion for automated storage and retrieval system. In: IEEE Congress on Evolutionary
Computation, pp. 1–7. IEEE (2010)

33. Zuefle, M., Bauer, A., Lesch, V., Krupitzer, C., Herbst, N., Kounev, S., Curtef, V.: Au-
tonomic forecasting method selection: Examination and ways ahead. In: 2019 IEEE In-
ternational Conference on Autonomic Computing (ICAC), pp. 167–176 (2019). DOI
10.1109/ICAC.2019.00028

A Variable Summary

Table 11: Overview on used variables in Section 3 and 4.

Variable Explanation

ri Rack with number i
x | y Rack coordinates x and y
p Product p
rankp Rank of product p
|P | Size of the product assortment

Optimizing Processes in Mezzanine Warehouses 37

Table 12: Overview on used variables in Section 5.

Variable Explanation

fj Floor with id j
A Area A
totalQ Total quantity of a product in an area
idealQ Ideal quantity of a product in an area
C Chromosome representation of an assignment solution

distri Walking distance to rack i
idealDistp,fj Ideal walking distance for product p

relRankp Relative rank of product p
rackIdxp,fj Rack index of product p on floor fj
Rfj List of rack on floor fj

tqp Target quantity for product p
Mk Mask with identifier k
q Quantity of products inside a mask
sal Sub aisle with identified l
qFactor Factor of actual existing quantity of a product compared to the target

quantity
maskScore Score for a mask indicating how close the actual quantity of a product

is to the target quantity
subAisleScore Score for each sub aisle based on the maskScore
quantityScore Score for a floor based on the subAisleScore

cp Correlated product
conf Confidence value of a correlation
qClusters Possible clusters of target quantities
idealCorrQ Ideal Quantity to which the correlated product should be available in

the vicinity of the incoming product
corrQ Fraction to which the items of cp stored in r are considered to be in

vicinity of p
exQcp,r Existing quantity of the correlated product cp in rack r

L Number of generations to be used for calculating the standard devia-
tion of the maximum crowding distance

δlim Threshold for the standard deviation of the crowding distance

38 Veronika Lesch et al.

Table 13: Overview on used variables in Section 6.

Variable Explanation

k Ant with identifier k
m Market with identifier m
dm,n Manhattan distance between two markets m and n
Uk Set of markets ant k did not visit yet
Ikn Percentage to which the required items of ant k are available at market

n

dpdm1 Distance between p/d-point and the first market to be visited
dsubri

Walking distance within a sub-aisle until rack i
dcrossmi

Walking distance within a cross lane until market mi

dmarket
mi,mi+1

Walking distance between visited markets

dpdmj
distance from last visited market to next p/d-point

probkm,n Probability that ant k moves from market m to market n
τm,n Pheromone value of edge (m,n)
ηkm,n Heuristic value for ant k on edge (m,n)

τ im,n Pheromone value of edge (m,n) in matrix i
PRi

ib Iteration-best pick route that minimizes objective function ofi
PRi

gb Global-best pick route that minimizes objective function ofi

	Introduction
	Related Work
	Meta-Model of Considered Mezzanine Warehouses and Overview on the Processes
	Storage Assignment
	Genetic Algorithm for Storage Assignment
	Order Picking
	Evaluation
	Conclusion
	Variable Summary

