
Springer Nature 2021 LATEX template

De Bello Homomorphico: Investigation of the

extensibility of the OpenFHE library with

basic mathematical functions by means of

common approaches using the example of the

CKKS cryptosystem

Thomas Prantl1, Lukas Horn1, Simon Engel1, Lukas
Iffländer1, Lukas Beierlieb1, Christian Krupitzer2, André

Bauer3, Mansi Sakarvadia3, Ian Foster3 and Samuel Kounev1

1 University of Würzburg, Germany, e-mail adresses:
{firstname.lastname}@uni-wuerzburg.de .

2 University of Hohenheim, Germany, e-mail:
christian.krupitzer@uni-hohenheim.de .

3 University of Chicago, USA, e-mail adresses:
andrebauer@uchicago.edu, sakarvadia@uchicago.edu,

foster@cs.uchicago.edu .

Abstract

Cloud computing has become increasingly popular due to its scalability,
cost-effectiveness, and ability to handle large volumes of data. How-
ever, entrusting (sensitive) data to a third party raises concerns about
data security and privacy. Homomorphic encryption is one solution that
allows users to store and process data in a public cloud without the
cloud provider having access to it. Currently, homomorphic encryption
libraries only support addition and multiplication; other mathematical
functions must be implemented by the user. To this end, we discuss
and implement the division, exponential, square root, logarithm, min-
imum, and maximum function, using the CKKS cryptosystem of the
OpenFHE library. To demonstrate that complex applications can be
realized with this extended function set, we have used it to homomor-
phic realize the Box-Cox transform, which is used in many real world

1

Springer Nature 2021 LATEX template

2 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

applications, e.g. time series forecasts. Our results show how the num-
ber of iterations required to achieve a given accuracy varies depending
on the function. In addition, the execution time for each function is
independent of the input and is in the range of ten seconds on a ref-
erence machine. With this work, we provide users with insights on
how to extend the original restricted function set of the CKKS cryp-
tosystem of the OpenFHE library with basic mathematical functions.

Keywords: Homomorphic Encryption, Performance, Accuracy, Basic
Mathematical Functions, Division Function, Exponential Function, Square
Root Function, Logarithm Function, Min/Max Function, Telescope, Time
Series Forcasting, Box-Cox-Transformation

1 Introduction

In recent years, the amount of data generated, stored, and consumed worldwide
has increased rapidly. It is estimated that it will grow to 180 zettabytes by
2025.1 To manage this volume of data, cloud computing is useful because
it provides a scalable and elastic infrastructure; businesses and organizations
can easily increase or decrease their computing resources as needed to handle
changing data volumes. Cloud providers also offer a variety of storage solutions
that can handle large amounts of data, such as object storage and data lakes.
Marc Hurd (former co-CEO of Oracle Corporation) estimates that by 2025,
80% of enterprise data centers will be moving to cloud infrastructures.2 The
reasons for migrating to public clouds are manifold; for instance, businesses can
reduce their capital expenses and operating costs associated with managing
and storing large amounts of data as well as gain access to a wide range of tools
and services for data analysis and processing. Further, it has been repeatedly
shown that energy can be saved by using cloud computing [1].

To take advantage of cloud computing, the data must be entrusted to a
third party. However, there are many fraud scenarios and/or problems with
data jurisdiction. For example, the cloud provider could be in the same busi-
ness as the user and exploit the uploaded data, or the provider could also sell
the data to a competitor. Another scenario is that the cloud provider could
be compromised, and the data would then be accessible to the intruder. Addi-
tionally, issues with data sovereignty may arise; the data will be stored and
subject to the laws of the country where the cloud provider operates and may
be accessible to government authorities under certain circumstances. These
possibilities are a major concern for medical data, which is subject to the Gen-
eral Data Protection Regulation (GDPR), or any other sensitive data. The
described issues are a major showstopper for the proliferation of cloud-based
services, as shown by a survey in Germany [2], which found that 48% of Ger-
man companies have concerns about the data security of clouds, and 40% of

1Statista: https://www.statista.com/statistics/871513/worldwide-data-created/
2The Wall Street Journal: https://www.wsj.com/articles/BL-CIOB-11316

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 3

German companies therefore decide against using an external cloud. This limi-
tation of data security also slows down the development of artificial intelligence
(AI) models.

To still benefit from the features of cloud computing without the cloud
provider being able to access the data, the user can implement security best
practices and use encryption to protect sensitive data. One possible solution is
the application of homomorphic encryption. Homomorphic encryption allows
for computations to be performed on ciphertext, obtaining an encrypted result
that can then be decrypted to get the result of the computation in plain-
text. This is in contrast to traditional encryption, where the data needs to be
decrypted first before any computations can be performed on it. Simply put,
the user can store and process data in a public cloud while the cloud provider
has no access to it. Technically, the user can run databases or microservices
in the cloud as well as train machine learning models, while preserving the
privacy of all data stored in the cloud.

Although the idea of homomorphic encryption was already introduced back
in 1978 [3], and the first implementation of this method was presented in
2009 [4], homomorphic encryption has only recently been made available to
developers in the form of corresponding libraries. However, existing homo-
morphic encryption libraries (e.g., OpenFHE or SEAL) support only addition
and multiplication so far; other relevant basic mathematical functions (such as
square root, logarithm, etc.) must be implemented by the user. The realization
of such additional functions needed for the implementation of the CKKS [5]
cryptosystem of the OpenFHE library [6] is discussed in this article. Namely,
we propose implementations for the following functions: division, exponential,
square root, logarithm, minimum, and maximum function. Additionally, we
compare them in terms of their computational efficiency.

More precisely, for each basic mathematical function, we first provide an
overview of how the respective function is calculated in the literature for the
non-homomorphic case. Then, for each suitable computation approach for the
homomorphic case, we determine the required multiplicative depth, accuracy,
and limitations (e.g., the approach only converges to the actual value in a very
small interval). Based on this analysis, we select the best approach for each
function and then implement and analyze it in terms of execution time and the
required number of iterations to attain a certain accuracy. After examining the
basic mathematical functions, we apply homomorphic encryption in a sophisti-
cated use case, namely the Box-Cox-Transformation [7], which is used in many
different domains, such as time series forecasting [8]. Since time series fore-
casts rely heavily on historical data, the integration of confidential data using
homomorphic encryption to augment the dataset appears highly beneficial,
especially for confidential data (e.g., medical, financial, or administrative).

In summary, the core contributions of this article are:

1. We review and analyze different approaches to approximate basic mathe-
matical functions.

Springer Nature 2021 LATEX template

4 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

2. We implement the best-performing candidate for each basic mathematical
function using the CKKS cryptosystem of the OpenFHE library and analyze
the necessary execution time and number of iterations to attain a given
accuracy.

3. We use the extended OpenFHE library to implement the Box-Cox-
Transformation in a time series forecasting scenario and evaluate its
performance in a real-world use case.

The results of our contributions show that the number of iterations required
to achieve a given accuracy varies depending on the function. For example,
only the square root, logarithm, minimum, and maximum functions managed
to achieve 95% accuracy in less than 10 iterations in almost all cases. For
all methods, the execution time is independent of the input and increases
with the number of iterations. While the growth rate increases with the num-
ber of iterations for the exponential function, it decreases for the division,
square root, minimum, and maximum function. Overall, we were able to
homomorphic implement all basic mathematical functions as well as the Box-
Cox-Transformation. The execution times of the basic mathematical functions
and the Box-Cox transformation are in the range of 10 seconds and 4 hours,
respectively, on our reference machine. We see potential for further optimiza-
tion, such as performing the computations on GPUs instead of CPUs, as is
common in the machine learning domain, or developing specialized hardware,
as is common in the cryptography domain.

To the best of our knowledge, we are the first to provide (1) guidelines on
how a wide range of basic mathematical functions can be homomorphic realized
and (2) a performance analysis of the homomorphic realized basic mathemat-
ical functions in terms of computation times and accuracy. The methods we
propose for the realization of the respective basic functions promise applica-
bility to arbitrary ranges of values with as minimal multiplicative depth as
possible. We see significant potential to use this broad set of functions as a
basis for the homomorphic realization of complex machine learning applica-
tions, such as time series forecasting or neural networks, which consist of a
string of the basic mathematical functions realized by us.

The remainder of this article is structured as follows: First, we introduce
the basics of homomorphic encryption in Section 2 and discuss related work
in Section 3. Then, we introduce the basic mathematical functions we selected
in Section 4 and their implementations in Section 5. The results are presented
in Section 6. Finally, we conclude the article in Section 7.

2 Background

In this section, we first define the basic terms of a cryptosystem and then
extend them to a homomorphic cryptosystem. Before we can define the term
cryptosystem, we must first define the two terms plaintext and ciphertext.
By plaintext we mean all things that can be encrypted, such as texts, letters,
numbers, or vectors. We call the encryption of a plaintext ciphertext. Based

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 5

on these two terms and in accordance with [9], we can now define what a
cryptosystem is.

Definition 1 A cryptosystem is a tuple (Σ,G, E ,D) with the following properties:
Σ is a finite, non-empty set, also called alphabet. The plaintext space P, the key
space K, and the chiphertext space C are subsets of the alphabet. G is a probabilistic
algorithm that outputs a key pair (pk, sk) chosen according to some distribution.
The key pk, also called the public key, is intended for encryption. The key sk, also
called the secret key, is intended for decryption. E takes as input a key pk and a
plaintext message m and encrypts it to a ciphertext c. D takes as input a key sk and
a ciphertext c and outputs the plaintext m. Additionally, the tuple (Σ,G, E ,D) must
satisfy the following condition, since otherwise it is not guaranteed that a ciphertext
can be brought back to its original form. This condition describes that for every
possible key pair of pk and sk, the plaintext m encrypted with pk is decrypted back
into the plaintext m with the associated sk [9].

∀m ∈ P : ∀(pk, sk) ∈ K : D(sk, E(pk,m)) = m

Having defined the basics of a cryptosystem, we now extend it in terms of
homomorphism. The goal of homomorphic encryption is to perform operations
on encrypted data such as addition, multiplication, exponentiation, etc. More
precisely, homomorphic encryption aims at encrypting a plaintext, performing
an operation on it, and decrypting it again, so that the result is the same as if
the operation had been performed on the plaintext. Therefore, in accordance
with [10], we extend Definition 1 to meet these new requirements.

Definition 2 A homomorphic cryptosystem is defined as a tuple
(Σ,G, E ,D,F , Evaluate) with the following properties: (Σ,G, E ,D) is a cryptosystem
and F is a set of functions that can be calculated by this cryptosystem. Evaluate is
an algorithm that, given a key k, a function f ∈ F , and a cipher text c, calculates a
new ciphertext c′ of the same length, or written more formally |c′| = |c| [10].

The last condition is necessary because otherwise, it would be possible to
append the desired calculation at the end of the ciphertext and execute it
when it is decrypted. There are currently four different types of homomorphic
encryption schemes. Partially homomorphic encryption describes schemes that
only support one type of operation (e.g., addition). Semi-homomorphic encryp-
tion, also known as “somewhat homomorphic encryption” (SWHE), includes
a cryptosystem that can support multiple operations but only on a limited
set of functions. Leveled fully homomorphic encryption includes cryptosystems
that can perform arbitrary computations but only on a limited depth that
needs to be known in advance; usually, the depth corresponds to the number
of multiplications. A system with a depth of n supports up to n multiplica-
tions per number. Going above these numbers can lead to arbitrary results or
is not supported. Cryptosystems of this type are the current standard. Finally,

Springer Nature 2021 LATEX template

6 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

fully homomorphic encryption supports arbitrary operations and unbounded
depth. There are not many cryptosystems that fulfill this requirement, and
they are usually extremely slow because complex computations are necessary
to keep the noise of the ciphertext low, given that if the noise exceeds a certain
threshold, it would no longer be possible to decrypt the ciphertext.

Finally, we would like to distinguish the term depth from iteration, as
both terms are quite similar, but we use them to describe different things. By
the term iteration we mean the number of iterations we have performed for
an iterative procedure, whereas by the term depth we mean the number of
consecutive multiplications performed.

3 Related Work

In this section, we review related work and show the novelty and the necessity
of our contributions. To do this, we go through the functions we imple-
mented homomorphic one by one and compare our implementation to existing
approaches. Namely, these functions are the division, exponential, square root,
logarithm, minimum, and maximum function. In doing so, we do not go into
detail about related work that performs the computation of the functions in
an unencrypted fashion.

One of the first ideas for homomorphic computation of the division func-
tion came from Lauter et al. [11]. It consisted of computing the numerator and
denominator separately and returning the result as a fraction. The representa-
tion of the result of the division function as a fraction is mathematically seen
from the expressiveness equivalent to the representation of the result as a dec-
imal number; however, exactly this computation of the decimal number is the
actual task of the division function. Common implementations of the division
function, such as in GNU C++, return a concrete number and not a fraction.
Thus, in our opinion, the implementation of the division function in [11] is not
complete as it is in our case. A computational method of division of integers
was proposed by Okada et al. [12]. In summary, this approach attempts to
determine all theoretically possible inverses of the denominator, and then test
through all of them to determine the candidate that is truly the inverse. We dif-
fer from this approach in that we allow division not only of integer but also of
decimal numbers. This is not possible with the approach from [12], since there
would be an infinite number of candidates for floating point numbers, which
could theoretically be the inverse, and thus testing all would take an infinite
amount of time. Also a computational method for the division of integers was
proposed by Babenko et al. [13]. This is based on a variation of the Euclidean
division algorithm. However, the authors assume that single encrypted bits
can be compared with each other. They only make this assumption and do
not explain how this works in detail, nor do they provide an implementa-
tion. Therefore it remains open whether this calculation method will ever
be realizable. The authors of [14] consider the Newton-Raphson method and
the Goldschmidt division algorithm for computing the division function. Both

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 7

approaches require a starting value x0, which the authors select once depend-
ing on the interval. Therefore, the information for which value from the interval
the Newton-Raphson method or the Goldschmidt division algorithm should
be applied is not used by this fixed choice of the starting value x0. We differ
from this work in that: (1) We have provided an overview of possible division
calculation methods in order to make a reasoned choice based on performance
and accuracy. (2) The authors measured the computation times of the divi-
sion method only on the interval [0, 64], whereas we evaluated a much larger
interval [−100, 100]\{0}, which also contains negative values. (3) We compare
the results of homomorphic and non-homomomorphically calculated results of
the division function to make statements about the accuracy of our calcula-
tion method. (4) We evaluate how many iterations it takes to achieve a certain
accuracy on a given interval. (5) We choose the starting value x0 depending
on the concrete value for which the division should be calculated and not only
on the basis of the interval, from which the value originates, for which the
division is to be calculated In addition, we would like to mention the work of
Thijs Veugen [15] and Ugwuoke et al. [16], which also includes a method for
computing the division function. However, since they rely on performing com-
putations in an unencrypted manner, we do not discuss them in detail. We
distinguish ourselves from these two works in that we perform the computation
of the division function completely encrypted.

The authors of [14] deal not only with the calculation of the division func-
tion but also with the root function. In doing so, they propose to compute
the root function using the Newton-Raphson method, just as we do. However,
they do not address how to determine the initial value x0 for the root function.
Beside this, we also differ from [14] in the same ways that we did for the divi-
sion function. Shortell et al. also compute the root function in [17] using the
Newton-Raphson method. However, a fixed initial value x0 is calculated for a
certain interval for this purpose. Thus, the root can be computed only for small
numerical ranges. Our approach of the dynamic calculation of the starting
value, however, also supports the calculation of the root for larger numerical
values. Further works [18–21] focus on the computation of the square root.
However, the authors do not compute the root directly but only the inverse of
the root. We mainly differ from such approaches in that we compute the root
directly and not the inverse of the root, to which the division function must
be applied once again. In addition, we would like to mention the work in [22],
which also deals with the computation of the square root function, however,
in an unencrypted scenario.

With regard to the exponential function, literature already exists that deals
with its homomorphic calculation. For example, several works [5, 5, 23–25]
compute the exponential function homomorphic via the Taylor series, as we
do. Our work extends this existing literature by providing an overview of the
methods for computing the exponential function and a reasoned choice of the
Taylor series based on it. As an additional extension, our work offers an anal-
ysis of how many terms of the Taylor series one must compute for a certain

Springer Nature 2021 LATEX template

8 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

accuracy, as well as a more detailed analysis of the computation times of the
exponential function.

In the homomorphic encryption context, we found with [17] the only one
paper that discusses the computation of the natural logarithm. The authors
suggest to calculate the natural logarithm via Taylor series. We had also con-
sidered this approach to calculate the natural logarithm; however, we discarded
this approach because it is only accurate for a small range around the devel-
opment point [26]. Instead, we propose a new approximation method for the
natural logarithm, which provides higher accuracy for wider ranges. In addi-
tion to presenting a new calculation method for the natural logarithm, we also
evaluate it in terms of calculation times and accuracy.

With regard to the minimum and maximum function, there are several
works in the literature [27–36] that cover this topic. In [36], the most efficient
method for the homomorphic implementation of the maximum and minimum
function was presented so far, which is why we have directly adopted this
method. We extend the existing literature by a more detailed analysis of the
required calculation times and by an analysis of how many iterations are
required for a certain accuracy.

We would also like to mention that a number of works already exist (e.g.,
[37–39]) that have implemented subsets of the function set considered by us
in order to realize the computations required for working with different mod-
els, such as neural networks, for example. In these works, there is usually no
analysis of the required multiplicative depth as well as the performance of the
individual functions. Instead, the latter are mostly based on approximations
by means of polynomials, which are rather untypical for the computation of
more complex functions. For these reasons, we do not discuss these works in
more detail here.

We would also like to mention works like [40], which makes it possible to
choose during the encryption phase whether the cryptosystem should have
the property homomorphism or non-malleability. This is not necessary for us.
Since the homomorphic property is essential for us and we therefore do not
need this choice, we do not go into this work in more detail.

Finally, our work is the first to cover a broader range of mathematical
functions (including the division function, root function, exponential func-
tion, logarithm function, as well as the maximum and minimum function),
while assessing different approaches for the calculation of these functions and
analysing the proposed implementations uniformly with regard to the required
calculation times and the number of iterations for a desired accuracy.

4 Methods for Computing Basic Mathematical
Functions Homomorphic

This section describes the set of identified methods for computing basic
mathematical functions homomorphic. Specifically, we consider the following
basic mathematical functions: division, exponential, square root, logarithm,

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 9

minimum, and maximum. We first review the literature for common implemen-
tation methods and then select a method based on the criteria of multiplicative
depth, accuracy, and constraints. In doing so, we determined the respective
multiplicative depths ourselves and presented a novel method for calculating
the logarithm.

4.1 Method Selection for the Division Function

To realize the homomorphic computation of the division function f(a, b) = a
b ,

where a and b ∈ R, we looked around for common methods to compute this
function. The simplest and most common class of algorithms to compute the
division function is the so-called digit recurrence method. Division is computed
by iteratively applying the subtraction function [41]. However, this widespread
class of division algorithms is not suitable for our scanario, since its program
logic in the homomorphic case would depend on homomorphic encrypted val-
ues. Thus, it would not be feasible as the following example shows: The division
a/b is computed by counting how many times one can subtract b from a so
that the remainder is still greater than or equal to zero. Thus, after the first
subtraction, one would have to test whether the remainder is greater than or
equal to zero, which, as we will see later, can also be determined in the homo-
morphic case. However, the result of this comparison (i.e., whether the residual
value is greater than or equal to zero) is also homomorphic encrypted, which
means that the algorithm cannot access the result in order to decide whether
the computation should be continued.

Common methods for the approximation of functions like Taylor series or
the Padé approximation are also out of question for the calculation of the
division function, because these methods themselves fall back on the division
function. Thus, from the possible approaches for the computation of the divi-
sion function that we identified in the literature, only the Goldschmitdt [42]
and the Newton-Raphson [43] methods remained. These two approaches com-
pute the division function by first iteratively computing the value of 1

b and
then multiplying it by a. Thereby both methods exhibit the same relative accu-
racy after a given number of iterations [42]. For this reason, we make the final
choice between these two schemes based on the required multiplicative depth
and the constraints of the two methods (see Table 1). Both methods are iden-
tical with respect to their constraints, namely that the initial value must be
known before the function is implemented. Therefore, the selection was made
on the basis of the respective required multiplicative depth. Since the Newton-
Raphson method has a smaller depth, we selected it for the realization of the
division function. The Newton-Raphson method is also the most frequently
used approach for calculating the division function in the non-homomorphic
case [44].

Springer Nature 2021 LATEX template

10 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

Table 1: Overview of methods for calculating the division including their
required multiplicative depths and constraints. Here n stands for how many
iterations are to be calculated for the respective method.

Method Multiplicative Depth Limitations

Newton-Raphson [43] 2 * n + 2 Start value required
Goldschmidt [42] 2n + n Start value required

4.2 Method Selection for the Exponential Function

To realize the exponential function, we first look at common implementations
from practice and analyze them with respect to their use for homomorphic
encryption. For example, the GNU C++ library implements the exponen-
tial function mostly by means of simple polynomials, which can be realized
homomorphic. However, the GNU C++ implementations additionally also use
operations like rounding or conditional statements [45]. We already discussed
for the division function that conditional statements could not be implemented
homomorphic. Hence, we, unfortunately, have to exclude the GNU C++ imple-
mentation of the exponential function for our homomorphic use case. For the
same reason, we cannot use approaches that use look-up tables for the com-
putation of the exponential function (e.g., [46]). Also commonly cited in the
literature are hardware solutions for the computations of the exponential func-
tion (e.g. [47–49]), which we also exclude directly because we want to solve the
computation of the exponential function hardware independent of software.

Thus only the computation via Tylor series, Padé approximation, or the
Newton-Raphson approach remained from the procedures found by us for the
computation of the exponential function. To choose between three procedures,
we first consider Table 2, which lists the necessary multiplicative depth and
restrictions of the three procedures. From this table, we can see that the
Taylor series is more suitable than the Padé approximation and the Newton-
Raphson approach for our application with regard to the multiplicative depth
and limitations. This is because (1) for the Taylor series, unlike the Padé
approximation, no additional parameters need to be computed and (2) the
Taylor series requires the lowest multiplicative depth. According to Table 2,
the Padé approximation requires a depth of ⌈log2(max(m, o))⌉+d, or if we use
the Newton-Raphson method for division where d becomes 2 ∗ n+ 1, a depth
of ⌈log2(max(m, o))⌉ + 2 ∗ n + 1. The Newton-Raphson approach requires a
depth of (d + l) ∗ n, or if we again use the Newton-Raphson method for the
division, a depth of 2 ∗ n2 + n + l ∗ n. In comparison, the Taylor series has a
much shallower depth of ⌊log2(n)⌋+ 1.

In addition to performance and constraints, we would also like to consider
the accuracy of the methods for choosing a method to realize the exponential
function. In the literature, one can often read that the Padé approximation
has a better accuracy than the Taylor series (see e.g. [50–52]). However, this
is mainly the case when functions contain poles [53]. Since the exponential
function has no poles the accuracy of the Taylor series for computing the

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 11

exponential function is very accurate for very large ranges of values, as we will
see in the course of the paper. Furthermore, since the Taylor series does not
rely on the accuracy of other functions compared to the Padé approximation,
we rate the accuracy of the Taylor series higher than the accuracy of the Padé
approximation. For the same reason, we also assume that the accuracy of the
Taylor series is better than that of the Newton-Raphson method. Therefore,
our final choice for realizing the exponential function falls on the Taylor series.

Table 2: Overview of methods for calculating the exponential function includ-
ing their required multiplicative depths and constraints. Here n stands for how
many iterations are to be calculated for the respective procedure, m and o
stand for the degrees of the two polynomials of the Padé-Approximation and
l and d stand for the multiplicative depth of the implementation of the used
logarithmic and division function.

Method Multiplicative Depth Limitations

Taylor series ⌊log2(n)⌋+ 1
Padé-Approximation [42] ⌈log2(max(m, o))⌉+ d Additional coefficients required

Newton Raphson (d+ l) ∗ n Start value required

4.3 Method Selection for the Square Root Function

An overview of the methods that we could find in the literature for the com-
putation of the root function is listed in Table 3. We’ve already excluded all
methods that are not applicable in the homomorphic case. Thus, we excluded,
for example, the computation method of the GNU C++ implementation of
the root function [54], since their logic would depend on encrypted values.
Assuming that for the division function again the Newton-Raphson method
is employed, we can again replace d by 2 ∗ n + 1 in Table 3. This allows us
to arrange the root calculation methods in ascending order with respect to
the required multiplicative depth as follows for n ≥ 2: Wilkes (depth: 3n) <
Newton-Raphson (depth: 3n + 2) < Halley (depth: 4 ∗ n) < Heron (depth:
2 ∗n2 +n) < Bakshali (depth: 4 ∗n2 +6n). Thus, the Wiles method would be
the best choice regarding the multiplicative depth required. However, it has
a major disadvantage, as it is only suitable for values between 0 and 1. For
this reason, we selected the next method in the ranking, which has the best
accuracy compared to the other methods after a given number of iterations [55].

4.4 Method Selection for the Logarithm Function

For the implementation of the logarithm function log(x) with x ∈ R+\{0},
we again studied the literature for different realization approaches. Here, we
consider only the computation of the natural logarithm, since logarithms with
other bases can be computed using the natural logarithm (i.e., loga(b) =

Springer Nature 2021 LATEX template

12 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

Table 3: Overview of methods for calculating the root including their required
multiplicative depths and constraints. Here, n stands for how many iterations
are to be calculated for the respective procedure and d stands for the multi-
plicative depth of the implementation of the required division function.

Method Multiplicative Depth Limitations

Heron/Raphson [56] (d + 1) * n Start value required
Bakshali [57] (2d + 4) * n Start value required
Wilkes [58] 3 * n Range limited to [0,1)
Halley [59] 4 * n Start value required

Newton-Raphson [18] n * 3 + 2 Start value required

loge(b)
loge(a)

, where e is Euler’s number). In the following, if nothing else is indicated,

logarithm is interpreted to refer to the natural logarithm.
According to [60, 61], the logarithm can be determined using the

arithmetic-geometric mean, a power series, or a pre-calculated logarithm table.
Of these possibilities, we could directly exclude the calculation with the help
of look-up tables (e.g., as realized in the GNU C++ implementation [62]),
since here again the logic would depend on homomorphic encoded values. Of
the two remaining methods, the first computes the logarithm via the following
approximation: ln(x) ≈ π

2GM(1,22−m/x) −m ∗ ln(2). Here GM(. . .) represents

the computation of the geometric mean over its input values, p specifies the
desired precision in bits, and the parameter m must be chosen so that the
following inequality is satisfied: x ∗ 2m > 2p/2.

The calculation by power series can be realized using a Taylor series. The
“normal” Taylor series has a problem with the logarithm computation, because
it is exact only for a very small value range around the development point
[26]. However, this problem can be circumvented using the following relation

presented in the NIST Handbook [63]: ln(1+x
1−x) = 2 ∗

∑∞
m=0

x2m+1

2m+1 for x ∈
[−1, 1]. While, this equation also has the issue that its accuracy is limited to a
fairly small interval, we can get around this problem by clever rewriting. Thus,
when calculating ln(z) with z ∈ R+\{0}, we substitute the variable z with

the equivalent fraction
1+ z−1

z+1

1− z−1
z+1

. Substituting z−1
z+1 by the variable x afterwards,

we obtain ln(z) = ln(1+x
1−x). Since it is true that for z ∈ R+\{0}, it holds

that −1 < x = z−1
z+1 < 1 3 we can extend the relation as follows: ln(z) =

ln(1+x
1−x) = 2 ∗

∑∞
m=0

x2m+1

2m+1 with x = z−1
z+1 . In the following, we refer to this

kind of logarithm calculation as the modified Taylor series.
To make a selection from these presented methods, we first consider the

information in Table 4, which shows the corresponding required multiplicative

3Since z ∈ R+\{0} it holds z > 0. Multiplied by −2 it follows that −2z < 0. If one subtracts
−1 from both sides, −2z − 1 < −1 follows. This inequality can obviously be extended as follows:
−2z − 1 < −1 < 1. If we only add z everywhere, we get: −z − 1 < z − 1 < z + 1. Since z > 0
and therefore also z + 1 > 0, we can safely divide each by z + 1 and get −z−1

z+1 < z−1
z+1 < z+1

z+1 .

Truncated, this gives the inequality we are looking for: −1 < z−1
z+1 < 1.

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 13

depths and constraints. Here, we have additionally included the Padé approx-
imation, since it could in principle also be applied for the computation of the
logarithm function. If one assumes that for the exponential and root func-
tion, the methods determined before are used, then based on the values in
the table, it can be concluded that the necessary multiplicative depth of the
modified Taylor series (depth: ⌈log2(2 ∗ n + 1)⌉ + 3 + d) is smaller than the
depth of the arithmetic-geometric mean approach (depth: 3 ∗ n + 2 + 2 ∗ d)
and the Newton-Raphson method (depth:n ∗ ⌈log2(n)⌉ + d ∗ n). In addition,
the accuracy of the arithmetic-geometric mean approach or Newton-Raphson
method depends on the accuracy of either the root and division function or the
exponential and division function. In contrast, the accuracy of the modified
Taylor series depends only on the division function. Only the Padé approxi-
mation can have a lower multiplicative depth than the modified Taylor series
if max(m, o) < 2 ∗n+1. However, since the parameters m and o stand for the
used polynomials of the Padé approximation, on whose size the accuracy of
the approximation depends, the Padé approximation can undercut the modi-
fied Taylor series here only if corresponding accuracy is sacrificed. Since also
additional coefficients have to be calculated for the Padé approximation, the
modified Taylor series is the best choice with respect to depth and accuracy.

Table 4: Overview of methods for calculating the natural logarithm function
including their required multiplicative depths and constraints. Here, n stands
for how many iterations are to be calculated for the respective procedure, m
and o stand for the degrees of the two polynomials of the Padé-Approximation,
and d, e and s stand for the multiplicative depth of the implementation of the
used division, exponential, and square root function.

Method Multiplicative Depth Limitations

Modified Taylor series ⌈log2(2 ∗ n+ 1)⌉+ 3 + d
Padé-Approximation [42] ⌈log2(max(m, o))⌉+ d Additional coefficients required

Newton Raphson (d+ e) ∗ n Start value required
Arithmetic-geometric Mean s+ 2d Start value required

4.5 Method Selection for the Maximum and Minimum
Function

For the maximum and minimum function, we refer to [36], where an approach
for the homomorphic computation is proposed. The authors compute the

maximum function as follows: max(a, b) = a+b
2 +

√
(a−b)2

2 , where a and b ∈
R. Accordingly, the minimum function is computed as min(a, b) = a + b −
max(a, b), where a and b ∈ R. The authors also compare their approach against
other methods used in the literature [27–35]. Based on this comparison, the
following conclusions are drawn: (1) the authors’ computational method for
the maximum and minimum function is more efficient than other common
polynomial approximation methods such as Taylor, least square, and minimax

Springer Nature 2021 LATEX template

14 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

approximations and (2) it achieves (quasi-)optimal asymptotic computational
complexity. For these reasons, we directly adopt the method from [36] for the
maximum and minimum function.

5 Homomorphic Implementation of Basic
Mathematical Functions

Now that we selected suitable methods for computing the division, exponential,
square root, logarithm, maximum, and minimum functions in a homomorphic
manner, we describe how we implemented the individual functions. We focus
on the implementation of the division, square root, exponential, and loga-
rithm functions, since the remaining minimum and maximum functions can
be computed based on these functions.

5.1 Implementation of the Division Function

To realize the division function f(a, b) = a
b , with a and b ∈ R, we selected the

Newton-Raphson method in the previous section because it performed best
in terms of multiplicative depth and accuracy. We first calculate the inverse
of b using the Newton-Raphson method and then multiply it with a, that
is, f(a, b) = 1

b ∗ a. The Newton-Raphson method allows us to determine the
zeros of a function g(x). Thus, we can use the Newton-Raphson method to
compute the inverse of b if we find a corresponding function g(x) that is zero
at x = 1

b . Probably the simplest function that satisfies this condition is the
function g(x) = 1

x − b. In order to determine the zero for g(x), the Newton-
Raphson method provides an estimate x0 and then iteratively applies the
rule from Equation 1. As the number of iterations increases, the value of xn

approaches the zero point of g(x) under the assumption that the estimated
starting value x0 was appropriately good. Thus, the rule from Equation 1
applied to our function g(x) leads to Equation 2. It is important to mention
that in Equation 2, only multiplication and addition occur as operations, which
are already supported by current homomorphic encryption libraries.

xn+1 = xn − g(xn)

g′(xn)
(1)

xn+1 = xn − g(xn)

g′(xn)
= xn −

1
xn

− b
−1
x2
n

= xn + xn − x2
n ∗ b = xn ∗ (2− xn ∗ b) (2)

Thus, for the use of the Newton-Raphson method, we only have to select
a suitable initial value x0. Here, suitable means that x0 should be as close as
possible to the value 1/b. To obtain this estimate in the homomorphic case
is very problematic because: (1) the value of b is homomorphic encrypted
and therefore not known, and (2) the estimation procedure may only use the
operations addition and multiplication. In the literature, there are two ways in

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 15

which the initial value x0 is determined. The first approach is to assume that
b originates from a certain interval, for which one tries to choose a fixed initial
value x0 so that the Newton-Raphson method works as well as possible on this
interval [64]. The second approach is to also assume that b originates from a
fixed interval and that an auxiliary function h(b) = x0 can be set up, with the
help of which good initial values can be obtained for the interval [65]. The two
approaches thus differ in whether only a fixed starting value x0 is specified
for an interval or whether the starting value is determined dynamically for an
interval by means of an auxiliary function h(b) = x0. We experimented with
both approaches and finally decided to use the second one because we could
achieve better accuracy with it. As an auxiliary function, we used a simple
linear approximation of 1/b, since this was already sufficient to calculate the
division function very accurately. The linear approximation of 1/b is illustrated
for b ∈ [5, 30] in Figure 1. In this figure, the function l(x) = 0.15− 0.0039 ∗ x
was used as an example for a linear approximation. The initial value x0 for the
calculation of 1/b with b ∈ [5, 30] would be calculated in this case as follows:
l(b) = 0.15 − 0.0039 ∗ b. To determine the linear auxiliary function for the
inverse function we used a Brute-Force approach. For the known interval we
generate a balanced set of sample values (independent of the real ones) and
try out gradient and axis parameters for the linear function in a certain range.
After trying out all of them, we select the ones that produced the most precise
result. Through this process we get precise parameters without gaining any
knowledge of the data set except the interval range.

5 10 15 20 25 30

5 · 10−2

0.1

0.15

0.2

x

y

1/x

linear approximation of 1/x

Fig. 1: Illustration of the linear approximation of the division function on the
interval [5, 30].

5.2 Implementation of the Square Root Function

For the implementation of the root function f(a) =
√
a with a ∈ R, we decided

to also resort to the Newton-Raphson method. Thus, we must again first find
a function g(x) that has its zero at x =

√
a. The simplest and most intuitive

Springer Nature 2021 LATEX template

16 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

function for which this is the case is probably the function g1(x) = x2 − a.
However, this would lead to a division in every step of the iteration, which
should be avoided to keep the approximation error small. Therefore we cal-
culated 1/

√
a which is the zero of the function g2(x) = 1

x2 − a. Having this
result we only have to multiply it with a to obtain

√
a. In order to calculate√

a with the help of the Newton-Raphson method and the function g2(x), we
need an initial value x0, to which we have to iteratively apply the rule from
Equation 1. With our function g2(x), this rule takes the form from Equation
3. The iteration rule from Equation 3 only requires multiplication and addi-
tions and contains two fixed constants. However, this is no problem since we
are capable of doing Ciphertext-Plaintext multiplication and addition.

xn+1 = xn − g(xn)

g′(xn)
= xn ∗

(
1.5− a

2
x2
n

)
(3)

Thus, for the calculation of the root function by means of the Newton-
Raphson method, we only have to select a suitable initial value in each case.
Analogous to the division function, we have the following two possibilities:
(1) determine a fixed initial value x0 for an interval, or (2) calculate the ini-
tial value x0 dynamically by means of a auxiliary function h(x). In order to
choose between the two approaches we experimented with both approaches
and decided to use the second approach because we could achieve better
results with it. As an auxiliary function, we again chose a linear approxi-
mation, since this was already sufficient to calculate the root function very
accurately. A linear approximation for the interval a ∈ [5, 30] is shown in
Figure 2. Here, the root function is approximated by the linear auxiliary func-
tion l(x) = 0.12 ∗ x + 1.9 as an example. In this case, the starting value for
the computation of the root of a ∈ [5, 30] would be calculated as follows:
l(a) = 0.12 ∗ a+ 1.9. To determine the linear auxiliary function for the square
root function, we again used the Brute-Force approach explained in Sec. 5.1.

5 10 15 20 25 30

3

4

5

x

y

√
x

linear approximation of
√
x

Fig. 2: Illustration of the linear approximation of the root function on the
interval [5, 30].

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 17

5.3 Implementation of the Exponential and Logarithmic
Function

For the implementation of the exponential function, we use the Taylor series,
which is also how the exponential function is defined. In contrast to the
Newton-Raphson method, we do not need an estimated starting value x0 but
only the value x for which the function ex is to be evaluated and the number
of terms of the Taylor series that are to be considered. For simplicity, we refer
to the terms of the Taylor series as iterations in the rest of the paper. The
evaluation of the Taylor series itself involves only divisions, multiplications,
and additions. Since we already implemented all these operations, we only had
to string them together for the implementation of the exponential function.
To be able to calculate larger values for ex more easily, we used an additional
mathematical relation: ea+b = ea ∗ eb. This allows us to reduce higher powers
of ex to smaller powers, (e.g., instead of ex compute e0.5∗x and then multiply
the result by itself). More formally, we calculate ex as follows: ex = Πr

i=1e
(x/r)

with r ∈ N. Here, the value r must be specified beforehand for the implemen-
tation, depending on which range of values is considered. This technique for
reducing the exponent is in principle applicable to all realizations of the expo-
nential function. The r multiplications of ex/r increase the multiplicative depth
by the term ⌈log(r)⌉. For this, n, the number of iterations needed for the par-
ticular realization method of the exponential function, decreases. Therefore,
r should be chosen in such a way that the multiplicative depth saved by the
smaller iteration depth is larger than the multiplicative depth required for the
r multiplications. After various trials, we found that for r = 32, we achieved
good results for our measurements.

The situation is similar for the implementation of the logarithm. Our chosen
method for the logarithm is based only on the operations addition, multipli-
cation, and division. To compute log(x) based on the logarithm with smaller
input values, we exploit the following mathematical relationship: log(a ∗ b) =
log(a)+ log(b). If we now rewrite x as x ∗ n

n with n ∈ N, we can rewrite log(x)
as follows: log(x) = log(x ∗ n

n) = log((xn) ∗ n) = log(xn) + log(n). Thus, the
computation of log(x) can be traced back to the computation of log(xn), which
must then be added to the value of log(n). Since the value for n must be fixed
for the implementation before the program is executed, the value log(n) can
be pre-computed in the non-homomorphic case and then stored homomorphic
encrypted. For our measurements later, we chose n = 10 because we achieved
good results with it.

6 Evaluation

Now that we explained in detail the homomorphic realization of the division
function, root function, exponential function, logarithm function, and min-
imum and maximum functions, we analyze these functions regarding their
computation times and the number of required iterations for a given accuracy.
We first look at each function individually and then examine combinations of

Springer Nature 2021 LATEX template

18 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

them for composed functions. Finally, we evaluate a homomorphic implemen-
tation of the Box-Cox transformation [7], which is often used in the context of
time series analysis as implemented in tools such as Telescope [8].

As a measurement setup, we use a HPE ProLiant DL360 Gen9 server. This
server has 8 CPU cores with 2.6 GHz each (Intel (R) Xeon (R) CPU E5-2640
v3 @ 2.60 GHz) and 32 GB DIMM DDR4 RAM. We used Ubuntu 20.04 LTS as
the operating system. For the implementation of the underlying homomorphic
cryptosystem, we used the open source library OpenFHE v1.0.3 [6] and its
implementation of the CKKS cryptosystem.

6.1 Evaluation of the Division Function

We begin the analysis of the division function with the number of iterations
required for a given accuracy. By iteration, we mean how many steps of the
respective iterative computation procedure were executed. In the case of divi-
sion, for example, the number of iterations would correspond to the value n in
Equation 2. Since we trace the computation of the division a

b back to the com-
putation of the inverse of b, which is then multiplied by a, we focus our analysis
on determining the inverse of b. To do this, we must first specify the area from
which b originates. At a first glance, this may seem unusual, since one does
not have to make this specification in conventional programming languages.
However, this is only because this is done automatically in conventional pro-
gramming languages and one does not have to take care of it oneself in most
cases. For the analysis of the required iterations, we consider all intervals from
the following set:

{[a, b]|(a, b ∈ [−100, 100]) \ {0} ∧ (a < b) ∧ (a%0.1 = 0) ∧ (b%0.1 = 0)}.
In simpler terms, we tested the inverse determination on all possible inter-

vals between -100 and 100 in 0.1 steps excluding 0. We chose the interval -100
to 100 because: (1) we wanted to test the inverse determination for both pos-
itive and negative values and (2) we preferred to analyze a smaller interval in
detail rather than a larger one in a coarse-grained manner. In the future, we
plan to further expand the range from which intervals can be taken. We there-
fore see our evaluation primarily as a proof-of-concept. The same applies to
the following evaluations of the other basic mathematical functions.

For a specific interval, we then looked at all values in 0.1 steps, for example,
for the interval [1,1.5], we tested the computation of the inverse of the values
1.1, 1.2, 1.3, 1.4 and 1.5. Furthermore, for our evaluation, we aimed at achieving
an accuracy of 0.1 for the respective interval. For us, an accuracy of 0.1 means
that for 95% of the values of the interval, the homomorphic computed inverse
deviates from the true value of the inverse by a maximum of 0.1. Here, we have
chosen the 95% hurdle following a 95% confidence interval.

The required number of iterations for an accuracy of 0.1 for intervals
between -100 and 100 are illustrated in Figure 3. We use -1 iterations as an
encoding for invalid intervals. In Figure 3, it is immediately noticeable that
-1 iterations are required for all values from the triangle with the vertices (-
100/-100), (100,0), and (-100, 100). This is because there are invalid intervals

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 19

in this area, to which we have directly assigned the value -1. An interval is
invalid for us if its upper interval limit is smaller than its lower interval limit.
For the valid intervals, the figure shows that the number of required iterations
increases as the value of the respective interval approaches 0. Thus, the inter-
vals whose upper interval boundary is at most -13, or whose lower interval
boundary is at least 13, need only one iteration for an accuracy of 0.1. For
intervals containing values between -13 and 13, the number of required itera-
tions increases the closer their values are to zero. This is because the value of
1
b tends to infinity as the value of b approaches 0. This leads to the required
iterations diverging towards infinity in this case. To illustrate this behavior
graphically, we show the number of iterations up to 10 as a heatmap marking
the area around 0, which requires more than ten iterations, with the color pink
and the note “number of iterations > 10”.

Fig. 3: Visualization of the required iterations to compute the inverse for
values from different intervals with an accuracy of 0.1.

Now that we evaluated the number of iterations required for the inverse
determination of b with an accuracy of 0.1 for intervals from the range [-
100,100], we next consider the computation times. To this end, we measured
the interval [-100,100] in 0.1 steps for the inverse determination of b and varied
the number of iterations between 1 and 10 in one step for each value of b. We
thus measured the times of inverse determination of b = −100 for 1, 2, . . . , 10
iterations, then measured the times of inverse determination of b = −99.9 for
1, 2, . . . , 10 iterations, and so on. The computation times determined in this
way are shown in Figure 4, where we used the standard deviation as a mea-
sure of accuracy. Based on this figure, the following conclusions can be drawn:

Springer Nature 2021 LATEX template

20 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

(1) The computation times of the inverse determination increase as the num-
ber of iterations increases. (2) Although the computation times increase with
the number of iterations, this increase is not linear, but it continues to decrease
with each iteration. This is because the homomorphic computations of addi-
tion and multiplication become faster as more of the provided multiplicative
depth is already used up. (3) The computation time depends mainly on the
number of iterations and not on the value whose inverse is to be determined.
(4) The homomorphic inverse determination is in the range of seconds and is
thus significantly slower than the non-homomomorphic inverse determination,
which typically requires significantly less than 1 second.

Fig. 4: Required time to determine the inverse of b, where b ∈ [−100, 100]\{0}.
The iteration depth of the iterative computation procedure was varied between
1 and 10.

6.2 Evaluation of the Exponential Function

For the analysis of the exponential function, we proceed analogously to the
division function. We again first consider the number of required iterations
to achieve an accuracy of 0.1 for an interval and then evaluate the required
computation times. For an accuracy of 0.1, we again assume that for 95% of
the values of the considered interval, the homomorphic computation of the-
exponential function deviates from the true value by a maximum of 0.1. For
computing ex, we again specify a range from which the value x can be taken.
We chose the interval [-30,30] because: (1) we want to consider both positive
and negative values for x; (2) we prefer to analyze a small range in detail rather
than a large range coarsely, and (3) with e30, we are already in the two-digit

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 21

trillion range. For the analysis of the required iterations, we tested the expo-
nential function on all possible intervals between -30 and 30 in 0.1 steps, that
is, we considered all intervals from the following set:

{[a, b]|(a, b ∈ [−30, 30])} ∧ (a < b) ∧ (a%0.1 = 0) ∧ (b%0.1 = 0)}
The number of required iterations to achieve an accuracy of 0.1 for intervals

from the range [-30,30] are shown in Figure 5. Here, the invalid intervals, that
is, in the triangle with the vertices (-30,-30), (30,30), and (30,-30) are again
assigned the value -1. The intervals in this triangle are invalid, as their upper
limit is smaller than their lower limit in each case. Based on the figure, the
following conclusions can be drawn: (1) As long as the upper interval boundary
is negative, only one iteration is required for an accuracy of 0.1. This is because
the function ex converges to 0 very fast for x → −∞. (2) In the positive range,
as the x value increases, the number of iterations required for an accuracy of
0.1 increases. (3) At least from an upper interval boundary of 20, more than
10 iterations are needed for an accuracy of 0.1, which we have marked in the
figure with the color pink and the note “number of iterations > 10”.

Fig. 5: Visualization of the required iterations to compute the exponential
function for values from different intervals with an accuracy of 0.1.

Now that we analyzed the required number of iterations to achieve an accu-
racy of 0.1 for intervals from the range [-30,30], we evaluate the computation
times as shown in Figure 6. For this purpose, we measured for the range [-
30,30] in 0.1 steps in each case how long the computation of the exponential
function requires for up to 10 iterations. Thus, for x = −30, we measured how
long 1, 2, . . . , 10 iterations take, then how long 1, 2, . . . , 10 iterations take for
x = −29.9, and so on. Here, again, we used the standard deviation as the
accuracy measure. Figure 6 allows us to draw the following conclusions: (1)

Springer Nature 2021 LATEX template

22 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

Fig. 6: Required times to determine ex, where x ∈ [−30, 30]. The iteration
depth of the iterative computation procedure was varied between 1 and 10.

Computing one iteration and computing two iterations take the same amount
of time. (2) From 3 iterations on, the higher the number of iterations, the
higher the required computation time. (3) In contrast to the determination
of the inverse, the distance between the computation times of two successive
iterations increases from 3 iterations on. This is because, although the homo-
morphic operations addition and multiplication become faster with increasing
iteration depth, the computation time per additional iteration also increases.
Therefore, we explain the increasing distance between the computation times of
two successive iterations by the fact that the computation effort per additional
iteration increases more significantly than the basic homomorphic operations
become faster. This was not the case with the inverse determination, since
the computation expenditure per iteration was constant. (4) The computa-
tion times are independent of the concrete x value. (5) The homomorphic
computation of 10 iterations for the exponential function is still in the (two-
digit) second range, and it is clearly slower than the non-homomomorphic
computation, which typically requires less than 1 second.

6.3 Evaluation of the Square Root Function

For the evaluation of the square root function, we also proceed analogously
to the division function; we first consider the required number of iterations
to achieve an accuracy of 0.1 for an interval and then evaluate the required
computation times. Before conducting the measurements for the computation
of

√
x, we again had to specify a range from which the value x can be taken. We

chose the range [0,200] because: (1) we preferred to analyze a smaller range in
detail rather than a larger range coarsely; (2) for the computation of the root
generally only positive values come into question; and (3) the computation

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 23

times for this range were already very complex, as we will see later. For the
analysis of the required iterations, we considered all intervals from the set

{[a, b]|(a, b ∈ [0, 200])} ∧ (a < b) ∧ (a%0.1 = 0) ∧ (b%0.1 = 0)}.
That is, we tested the square root function on all possible intervals between

0 and 200 in 0.1 steps. The number of iterations required to achieve an accuracy
of 0.1 for intervals from the range [0,200] are shown in Figure 7. Here, we
again assigned the invalid intervals in the triangle with the vertices (-30,-30),
(30,30) and (30,-30) the value of -1. Based on the graph, we can draw the
following conclusions: (1) The number of iterations required for an accuracy
of 0.1 increases when the upper interval boundary increases and/or the lower
interval boundary decreases. (2) We can compute the root with an accuracy
of 0.1 with a maximum of 10 iterations almost on the entire range considered.
Only if the lower boundary is too close to 0, more than 10 iterations are
needed. We have marked this area accordingly with the color pink and the
note “number of iterations > 10”.

Fig. 7: Visualization of the required iterations to compute the square root
function for values from different intervals with an accuracy of 0.1.

The computation times for the root function
√
x for intervals from the

range [0,200] are illustrated in Figure 8. We again used the standard deviation
as a measure of accuracy. For this purpose, we measured the range [0,200]
in 0.1 steps, varying the iterations between 1 and 10. Thus, for x = 0, we
measured how long the root computation takes with 1, 2, . . . , 10 iterations
each. Then, we measured how long 1, 2, . . . , 10 iterations take for x = 0.1, and
so on. The depicted required computation times in Figure 8 lead us to the
following conclusions: (1) The computation times increase with the number
of iterations and are independent of the concrete x value. (2) The distance

Springer Nature 2021 LATEX template

24 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

Fig. 8: Required times to determine
√
x, where x ∈ [0, 200]. The iteration

depth of the iterative computation procedure was varied between 1 and 10.

between the computation times of two successive iterations decreases as the
number of iterations increases. This is due to the fact that the computation
costs per iteration are constant for the root function and the homomorphic
operations addition and multiplication become faster with increasing depth.
(3) The computation times required for the homomorphic root function are
in the range of (sometimes double-digit) seconds and are thus significantly
longer than in the non-homomorphic case, where typically less than 1 second
is required.

6.4 Evaluation of the Logarithm Function

The evaluation of the logarithm function log(x) is also analogous to the division
function. We again set a target accuracy of 0.1 and first specify the range from
which the value x can be taken. For the same reasons as for the root function,
we have chosen the range]0, 200]. In contrast to the root function, we exclude
0, given that log(0) is not defined. From the range]0, 200], we considered the
following sets for our measurements:

{[a, b]|(a, b ∈]0, 200]) ∧ (a < b) ∧ (a%0.1 = 0) ∧ (b%0.1 = 0)}.
To illustrate, we again measured all possible intervals between 0 and 200 in

0.1 steps. The number of iterations needed to compute log(x) with an accuracy
of 0.1 and x ∈]0, 200] are illustrated in Figure 9. Here, all invalid intervals in
the triangle (0,0), (200,0) and (0,200) were again assigned the value of -1. This
figure allows us to draw the following conclusions: (1) The number of iterations
needed for an accuracy of 0.1 increases the larger the upper interval limit is,
that is, the closer the value of x comes to the value 200. (2) We can always
achieve an accuracy of 0.1 for the range under consideration with a maximum
of 8 iterations.

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 25

The computation times for the logarithm function logx for intervals from
the range]0, 200] are illustrated in Figure 10, where we again use the standard
deviation as a measure of accuracy. We measured the range]0, 200] in 0.1 steps,
varying the iterations between 1 and 10. Thus, for x = 0.1, we measured how
long the computation of log(0.1) takes with 1, 2, . . . , 10 iterations each. Next,
we measured how long the computation of log(0.2) needs for 1, 2, . . . , 10 itera-
tions, and so on. Based on Figure 10, we can draw the following conclusions: (1)
The computation times are independent of the concrete x value and increase
with the number of iterations. (2) The homomorphic computation time for the
logarithm function is significantly higher than in the non-homomorphic case,
that is, the time needed for the homomorphic computation is in the range of
(sometimes double-digit) seconds compared to typically less than 1 second for
the non-homomorphic case.

Fig. 9: Visualization of the required iterations to compute the logarithm func-
tion for values from different intervals with an accuracy of 0.1.

6.5 Evaluation of the Maximum and Minimum Functions

For the evaluation of the maximum function max(a, b), we first specify the
range from which a and b can originate; more specifically, we take the range
[−10, 10]. One reason for the choice of this interval is to consider positive values
as well as negative values. On the other hand, in contrast to the previous
functions, the number of test cases increases quadratically for the maximum
function. For example, if we consider the interval [0, 5] to be measured in 0.1
steps, there are 5−0

0.1 ∗ 5−0
0.1 = 2500 test cases, whereas for the same interval for

the root function there were only 5−0
0.1 = 50 test cases. Since our measurements

Springer Nature 2021 LATEX template

26 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

Fig. 10: Required times to determine logex, where x ∈]0, 200]. The iteration
depth of the iterative computation procedure was varied between 1 and 10.

for the single analysis of the function and its interaction altogether took several
months, we had to concentrate on a smaller interval that we could measure in
a fine-grained manner. Specifically, we considered the following sets:

{[a, b]|(a, b ∈]− 10, 10]) ∧ (a < b) ∧ (a%0.1 = 0) ∧ (b%0.1 = 0)}.
The required number of iterations for an accuracy of 0.1 when computing

the maximum function max(a, b) with a, b ∈ [−10, 10] are shown in Figure 11.
Here, we again assigned the value of -1 to the invalid intervals in the triangle
(-10,-10), (10,-10), and (-10,10), that is, the intervals where the upper bound
is smaller than the lower bound. From Figure 11, it can be seen that for the
range [−10, 10], we never needed more than 8 iterations for the computation
of the maximum function.

The homomorphic computation times for the maximum function max(a, b)
with a, b ∈ [−10, 10] are shown in Figure 12. For overview reasons, we have
chosen a 2D representation of the measured values, which consist of tuples of
3 values (a, b, time required) each of which must be determined for different
number of iterations. For this purpose, we plot on the x-axis the distance
between a and b and on the y-axis the required time for 1,2, ..., 10 iterations.
Thus, each x value stands for a set of different cases, which have in common
that the distance between a and b is equal; for example, an x-value of 10
stands for the following cases: {max(a, b)|a, b,∈ [−10, 10]and|a − b| = 10}.
That these cases need the same computation times is due to the fact that the
computation of the maximum function is traced back to the computation of
the root function, which receives the squared value of the difference between
a and b as input parameter. Thus, the same root computation is performed
for all tuples (a,b) if they are equal with respect to the distance between a
and b. The computation times of the maximum function max(a, b) shown in
Figure 12 allow us to draw the following conclusions: (1) the computation

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 27

Fig. 11: Visualization of the required iterations to compute the maximum
function for values from different intervals with an accuracy of 0.1.

Fig. 12: Computation times to determine max(a, b), where a, b ∈ [−10, 10]
and a ≤ b. The iteration depth of the iterative computation procedure was
varied between 1 and 10. The x-axis represents the difference between a and b.

times are independent of the choice of a and b if they are ∈ [−10, 10]. (2)
The computation times increase as the number of iterations increases. (3) the
computation of the maximum function in the range [-10,10] takes between
5s and 22s. Thus, the homomorphic computation of the maximun function
is significantly slower than its non-homomorphic computation, but it is still
feasible in the range of seconds.

Springer Nature 2021 LATEX template

28 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

The evaluation of the minimum function was carried out in the same way
as the evaluation of the maximum function. Since we trace the minimum func-
tion back to the maximum function and only need an additional addition and
subtraction, the results of the analysis for the minimum function correspond to
those for the maximum function. For this reason, we do not analyse the mini-
mum function in detail here, but we show in the appendix the corresponding
measurement results (cf. Figures 17 and 18).

6.6 Evaluation of Combinations of the Functions

To evaluate how our approach performs when combining multiple func-
tions, we realized a complex use case homomorphic, namely the Box-Cox-
Transformation. This transformation has applications in many fields, such as
time series forecasting [8]. In the following, we first present the concept of
the Box-Cox transformation and then evaluate our homomorphic Box-Cox
transformation in terms of performance and accuracy.

6.6.1 Concept of the Box-Cox Transformation

The idea behind the Box-Cox transformation [7] is to transform a non-normal
distribution into a normal-like distribution by means of Equation 4 with a
carefully chosen parameter λ.

Y =

{
yλ−1

λ , if λ ̸= 0
log(y), else

(4)

An example of such a transformation can be seen in Figure 13. The left
part of the figure shows a non-normal distribution. If we apply the Box-Cox
transformation to it, we get a distribution that resembles a normal distribution,
as shown in the right part of the figure.

The biggest challenge in computing the Box-Cox transformation is to deter-
mine a suitable λ. We use Guerrero’s method [66] for this task, which is also
used, for example, in R Studio for the computation of lambda for the Box-
Cox transformation [67]. The idea of the Guerrero method is to test different
values for λ and choose the value that has the lowest coefficient c of variation
for the sub-series of the time series ts [68]. By a time series, we mean a vector

ts =

{(
v1
t1

)
, . . . ,

(
vn
tn

)}
(with t1 < t2, t2 < t3 and so on) that recorded the

measured values v1, . . . , vn at certain times t1, . . . , tn, respectively. To divide
ts into sub-series, the measurements that belong to a period are combined to
a set. As a concrete example of a time series to which we apply the Box-Cox
transformation, we use the birth figures in New York [69]. A timestamp ti
would thus be a month of a year and the measured values vi would be the
number of children born in New York in this month. In our case, the period
would be one year and thus have a length of 12. In the following we refer to
the sub-series for year i as period xi. For the sub-series or periods x1, . . . , xn

generated in this way, the parameter c must now be determined for different

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 29

Fig. 13: An exemplary illustration of the transformation of a non-normal dis-
tribution (left) into a distribution that resembles a normal distribution (right)
using the Box-Cox transformation (the example was created according to [70].)

values of λ in order to subsequently select the value for λ that has the lowest
value for c. The workflow for computing the parameter c for a specific λ is
illustrated in Figure 14. First, for each period xi, we compute the ratio yi of
the standard deviation to its mean. Then, the value zi is computed from each
of the values yi by exponentiating yi with (1− λ). For the zi values computed
in this way, we then determine their standard deviation and mean value, since
the parameter c is computed from the ratio of these two values. In order to be
able to perform these consecutive computations in a homomorphic setting, we
had to bootstrap some intermediate results. Otherwise, the noise, which is part
of the CKKS cryptosystem, would have become so large that the OpenFHE
library would have aborted further computations, since their results could no
longer be decrypted. The intermediate results that we bootstrapped and/or
for which we had to apply bootstrapping during their calculation are marked
in the figure with a red arrow 14.

At this point, we would like to point out that during the determination
of the most suitable value for λ all values, except for the value for λ, are
encrypted. The reason why we do not encrypt the respective value for λ is
that (1) the final selected value of λ does not allow one to draw conclusions
about the time series ts nor about the transformed time series, and (2) since
the implementation of Box-Cox is supposed to be time series-independent,
appropriately common values have to be chosen for the implementation, which
have to be tested in sequence. If the selected value for λ is to be kept secret, the
concrete test values including the sequence would have to be kept secret. Given
that the value of λ does not allow an attacker to draw any conclusions, we do
not think it is necessary to keep the selected value for λ secret. Nevertheless,
one could also perform the computation of zi with an encrypted value for λ.
To do this, one would have to rewrite zi as follows: zi =

yi

eλ∗ln(yi)
.

Springer Nature 2021 LATEX template

30 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

6.6.2 Evaluation of the Homomorphic Implementation of the
Box-Cox-Transformation

To evaluate our homomorphic realisation of the Box-Cox transformation in
terms of performance and accuracy, we first present the workflow of our imple-
mentation. This is illustrated in Figure 15 and consists of the sequential
calculation of the parameters, c1 . . . c4, the subsequent selection of the λ with
the lowest ci value and the final calculation of the transformation of the origi-
nal values using the selected λ. For each of these steps, we evaluate the required
calculation time and the accuracy. The required times of the individual steps
are listed in Table 5. It is striking in this table, that the most expensive cal-
culation is the determination of the λ with the lowest ci value, which, in the
non-homomorphic case, is probably one of the cheapest calculations, since
only the minimum of four numbers must be calculated, which can be realised
by three comparisons. In total, we needed 4.09 ± 0.01 hours for the homo-
morphic calculation of the Box-Cox transformation. In the non-homomorphic
case, on the other hand, the Box-Cox Transformation only requires 3.4± 0.01

Period
xi

Period
x1

Period
xn

mean(x1)

sd(x1)

mean(xi)

sd(xi)

mean(xn)

sd(xn)

y1 = sd(x1)
mean(x1)

yi =
sd(xi)

mean(xi)

yn = sd(xn)
mean(xn)

z1 = y1−λ
1

zi = y1−λ
i

zn = y1−λ
n

c = s
m

s = sd(z1, . . . , zn)

m = mean(z1, . . . , zn)

..
.

..
.

..
.

..
.

..
.

..
.

Calculations with Bootstrapping

Calculations without Bootstrapping

Fig. 14: Illustration of the calculation of the parameter c for the Guerrero
method to determine the parameter λ for the box-cox transformation.

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 31

milliseconds. Thus, the calculation time of the Box-Cox transformation using
our homomorphic realisation increases by 432× 106 percent compared to the
non-homomorphic calculation. However, our implementation still offers some
optimisation possibilities, such as the parallel calculation of the ci values, which
are independent of each other. This would roughly shorten the calculation
times in the homomorphic case to roughly 2.5 hours. The homomorphic reali-
sation of the Box-Cox transformation is thus, as expected, significantly slower
than its non-homomorphic realisation, but our measurements prove that the
computations are still feasible within a few hours and homomorphic encryption
thus represents a promising realistic option for implementing data protection
for cloud applications, where data security is top priority.

c1 calculation c2 calculation c3 calculation c4 calculation

Select λ with smallest ci valueCalculate transformation

Fig. 15: Workflow of the calculation steps of your homomorphic Box-Cox
transformation.

Table 5: Calculation times of the different steps of our homomorphic
realization of the Box-Cox Transformation.

Step Required Time in seconds

c1 calculation 1806.48± 14.07
c2 calculation 1863.51± 17.97
c3 calculation 1570.91± 14.56
c4 calculation 1818.01± 24.97
λ selection 6832.48± 9.23

Transformation calculation 828.64± 2.41

In addition to the time required for the homomorphic calculation of the
Box-Cox transformation, the accuracy achieved in the homomorphic variant
is of course also important. To do this, we first look at the accuracy of the
calculated intermediate results, which are listed in Table 6. From this table
we can see that the homomorphic calculation of the ci values are accurate
to at least 2 decimal places. In our opinion, this is already an impressive
accuracy, considering that the calculation of a ci value is non-trivial, as shown
in Figure 14. The achieved accuracy could also be increased by using a higher
iteration depth for the respective procedures, which would, however, increase
the calculation times accordingly.

Springer Nature 2021 LATEX template

32 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

We achieved slightly worse accuracy when homomorphic selecting the λ
value with the lowest ci value. In the non-homomorphic case this would have
been λ = 0, but in the homomorphic case we calculated λ = 0.1382. However,
we could have increased the accuracy at this point again by increasing the
iteration depths of the respective underlying methods. However, we decided
against such an increase, since on the one hand this would have increased the
computation time accordingly and on the other hand, with this homomorphic
calculated λ value, we can, in our opinion, achieve a fairly accurate over-
all approximation of the Box-Cox transformation. To show this, we consider
Figure 16, which illustrates the homomorphic calculated Box-Cox transfor-
mation with λ = 0.1382 and the non-homomomorphic calculated Box-Cox
transformation. In this figure, the mean deviation of the homomorphic variant
from the non-homomorphic variant is (2.22± 1.74)%.

Fig. 16: Comparison of the non-homomorphic and homomorphic calculated
Box-Cox transformation

Table 6: Accuracy of the homomorphic calculated intermediate results

λ Non-homomorphic computed c value Homomorphic computed c value

-1 0.16610 0.16379
0 0.14184 0.14068
1 0.15569 0.15566
2 0.19852 0.19841

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 33

7 Conclusion

Although cloud computing has proven helpful for managing large amounts
of data, privacy and data security concerns remain an issue, especially with
sensitive data such as medical records. To benefit from the features of cloud
computing without the provider having access to the data, homomorphic
encryption is an approach that allows the user to store and process data
securely in the cloud. However, homomorphic encryption libraries only support
addition and multiplication; other mathematical functions must be imple-
mented by the user. To this end, we implemented and investigated basic
mathematical functions, such as division, exponential, square root, logarithm,
minimum, and maximum, using the CKKS cryptosystem implementation of
the OpenFHE library. We then evaluated their performance in terms of accu-
racy and the computation time required to achieve it. Our results show how
the number of iterations required to achieve a given accuracy varies depend-
ing on the function. To demonstrate that our implementations can also be
used for more complex computations, we used them to implement the Box-
Cox transformation in a homomorphic setting. This transformation is used in
many real-world applications, such as time series forecasting.

While homomorphic encryption is still relatively slow, it is a promising solu-
tion for preserving data privacy and security. Especially since we see potential
to accelerate these computations, for example, by performing them on GPUs
instead of CPUs, as is common in machine learning, or by developing special
hardware for this purpose, as is common in cryptography. To this end, our
future work will focus on implementing additional workflow tasks from the time
series domain and exploring homomorphic neural networks. Our ultimate goal
is to create a user-friendly open-source tool that incorporates various mathe-
matical functions and requires minimal knowledge of homomorphic encryption.
Users should be able to easily apply homomorphic computing, such as comput-
ing a root homomorphically by creating the corresponding object rootObject
= root(lower interval limit, upper interval limit, precision) and
calling rootObject.calculateRoot(x). The bounds for the computation
should only be set initially, and for each following computation, the bounds
should be set automatically. Moreover, we plan to provide guidelines to assist
users in selecting appropriate initial bounds. In addition, we plan to imple-
ment the activation functions of neural networks for the CKKS cryptosystem
using the basic mathematical functions realised in this paper. As soon as we
can calculate the activation functions exactly homomorphic, we plan to string
them together into neural networks as a next step.

Declarations

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.
Conflict of interest The authors declare that they have no conflict of
interest.

Springer Nature 2021 LATEX template

34 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

Research Data Policy and Data Availability Statements: All data are
either included in the paper or can be found in the sources given.

References

[1] Park, J., Han, K., Lee, B.: Green cloud? an empirical analysis of cloud
computing and energy efficiency. Management Science (2022)

[2] Handelsblatt: Cloud-Computing in Deutschland: Statistik Zeigt
Das Nutzungsprofil Deutscher Unternehmen. (2020). Handelsblatt.
Online available under https://www.handelsblatt.com/adv/firmen/
cloud-computing-deutschland-statistik.html, Accessed on 22.01.2023

[3] Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and
privacy homomorphisms. Foundations of secure computation 4(11), 169–
180 (1978)

[4] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, pp. 169–178 (2009)

[5] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption
for arithmetic of approximate numbers. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23, pp. 409–437 (2017). Springer

[6] OpenFHE organization: OpenFHE. OpenFHE organization. Online avail-
able under https://www.openfhe.org/, Accessed on 17.01.2023

[7] Box, G.E., Cox, D.R.: An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological) 26(2), 211–243 (1964)

[8] Bauer, A., Züfle, M., Herbst, N., Kounev, S., Curtef, V.: Telescope: An
automatic feature extraction and transformation approach for time series
forecasting on a level-playing field. In: 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pp. 1902–1905 (2020). IEEE

[9] Katz, J., Lindell, Y.: Introduction to Modern Cryptography, second edi-
tion edn. Chapman Hall, CRC Cryptography and Network Security. CRC
Press, Boca Raton ; London ; New York (2015)

[10] Gentry, C.: Computing arbitrary functions of encrypted data. Commu-
nications of the ACM 53(3), 97–105 (2010). https://doi.org/10.1145/
1666420.1666444

https://www.handelsblatt.com/adv/firmen/cloud-computing-deutschland-statistik.html
https://www.handelsblatt.com/adv/firmen/cloud-computing-deutschland-statistik.html
https://www.openfhe.org/
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 35

[11] Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryp-
tion be practical? In: Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, pp. 113–124 (2011)

[12] Okada, H., Cid, C., Hidano, S., Kiyomoto, S.: Linear depth integer-wise
homomorphic division. In: IFIP International Conference on Information
Security Theory and Practice, pp. 91–106 (2019). Springer

[13] Babenko, M., Golimblevskaia, E.: Euclidean division method for the
homomorphic scheme ckks. In: 2021 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (ElConRus), pp.
217–220 (2021). IEEE

[14] Cetin, G.S., Doroz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-
wise homomorphic encryption. Cryptology ePrint Archive (2015)

[15] Veugen, T.: Encrypted integer division and secure comparison. Int. J.
Appl. Cryptogr. 3(2), 166–180 (2014)

[16] Ugwuoke, C., Erkin, Z., Lagendijk, R.L.: Secure fixed-point division for
homomorphically encrypted operands. In: Proceedings of the 13th Inter-
national Conference on Availability, Reliability and Security, pp. 1–10
(2018)

[17] Shortell, T., Shokoufandeh, A.: Secure signal processing using fully homo-
morphic encryption. In: International Conference on Advanced Concepts
for Intelligent Vision Systems, pp. 93–104 (2015). Springer

[18] Rahulamathavan, Y.: Privacy-preserving similarity calculation of
speaker features using fully homomorphic encryption. arXiv preprint
arXiv:2202.07994 (2022)

[19] Qu, H., Xu, G.: Improvements of homomorphic evaluation of inverse
square root. Available at SSRN 4258571

[20] Panda, S.: Principal component analysis using ckks homomorphic scheme.
In: International Symposium on Cyber Security Cryptography and
Machine Learning, pp. 52–70 (2021). Springer

[21] Panda, S.: Polynomial approximation of inverse sqrt function for fhe.
Cryptology ePrint Archive (2022)

[22] Gusani, S.: Efficient implementation of homomorphic encryption and its
application. PhD thesis (June 2015). https://doi.org/10.13140/RG.2.2.
14049.92007

[23] Khanna, S., Rafferty, C.: Accelerating homomorphic encryption using

https://doi.org/10.13140/RG.2.2.14049.92007
https://doi.org/10.13140/RG.2.2.14049.92007

Springer Nature 2021 LATEX template

36 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

approximate computing techniques. In: ICETE (2), pp. 380–387 (2020)

[24] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant
of approximate homomorphic encryption. In: International Conference on
Selected Areas in Cryptography, pp. 347–368 (2019). Springer

[25] Li, B., Micciancio, D.: On the security of homomorphic encryption on
approximate numbers. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pp. 648–677 (2021).
Springer

[26] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables vol. 55. US Government
printing office, Washington, D.C. 20402 (1964)

[27] Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for
b/fv, tfhe and heaan fully homomorphic encryption and predictions for
deep learning. IACR Cryptol. ePrint Arch. 2018, 758 (2018)

[28] Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic
evaluation of deep discretized neural networks. In: Annual International
Cryptology Conference, pp. 483–512 (2018). Springer

[29] Chatterjee, A., Sengupta, I.: Sorting of fully homomorphic encrypted
cloud data: Can partitioning be effective? IEEE Transactions on Services
Computing 13(3), 545–558 (2017)

[30] Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted
data. In: International Conference on Financial Cryptography and Data
Security, pp. 142–159 (2015). Springer

[31] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed
homomorphic operations and efficient circuit bootstrapping for tfhe. In:
International Conference on the Theory and Application of Cryptology
and Information Security, pp. 377–408 (2017). Springer

[32] Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing
real work with fhe: the case of logistic regression. In: Proceedings of
the 6th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pp. 1–12 (2018)

[33] Emmadi, N., Gauravaram, P., Narumanchi, H., Syed, H.: Updates on
sorting of fully homomorphic encrypted data. In: 2015 International Con-
ference on Cloud Computing Research and Innovation (ICCCRI), pp.
19–24 (2015). IEEE

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 37

[34] Kocabas, O., Soyata, T.: Utilizing homomorphic encryption to imple-
ment secure and private medical cloud computing. In: 2015 IEEE 8th
International Conference on Cloud Computing, pp. 540–547 (2015). IEEE

[35] Togan, M., Morogan, L., Plesca, C.: Comparison-based applications
for fully homomorphic encrypted data. Proceedings of the Romanian
Academy-Series A: Mathematics, Physics, Technical Sciences, Information
Science 16, 329 (2015)

[36] Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method
for comparison on homomorphically encrypted numbers. In: International
Conference on the Theory and Application of Cryptology and Information
Security, pp. 415–445 (2019). Springer

[37] Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E.,
Lee, J., Yoo, D., Kim, Y.-S., et al.: Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network. IEEE Access
10, 30039–30054 (2022)

[38] Al Badawi, A., Jin, C., Lin, J., Mun, C.F., Jie, S.J., Tan, B.H.M., Nan, X.,
Aung, K.M.M., Chandrasekhar, V.R.: Towards the alexnet moment for
homomorphic encryption: Hcnn, the first homomorphic cnn on encrypted
data with gpus. IEEE Transactions on Emerging Topics in Computing
9(3), 1330–1343 (2020)

[39] Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K., Naehrig,
M.: Crypto-nets: Neural networks over encrypted data. arXiv preprint
arXiv:1412.6181 (2014)

[40] Bhat, R., Sunitha, N.R., Iyengar, S.S.: A probabilistic public key encryp-
tion switching scheme for secure cloud storage. Int. J. Inf. Technol. 15(2),
675–690 (2023)

[41] Obermann, S.F., Flynn, M.J.: Division algorithms and implementations.
IEEE Transactions on computers 46(8), 833–854 (1997)

[42] Markstein, P.: Software division and square root using goldschmidt’s algo-
rithms. In: Proceedings of the 6th Conference on Real Numbers and
Computers (RNC’6), vol. 123, pp. 146–157 (2004)

[43] Rodeheffer, T.: Software integer division. Technická Zpráva MSR-TR-
2008-141, Microsoft Research (2008)

[44] Karp, A.H., Markstein, P.: High-precision division and square root. ACM
Transactions on Mathematical Software (TOMS) 23(4), 561–589 (1997)

Springer Nature 2021 LATEX template

38 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

[45] codebrowser: E expf.c Source Code [glibc/sysdeps/ieee754/flt-
32/e expf.c] - Codebrowser. (2022). codebrowser. Online available under
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/flt-32/e expf.c.
html, Accessed on 09.12.2022

[46] Schraudolph, N.N.: A fast, compact approximation of the exponential
function. Neural Computation 11(4), 853–862 (1999)

[47] Maĺık, P.: High throughput floating point exponential function imple-
mented in fpga. In: 2015 IEEE Computer Society Annual Symposium on
VLSI, pp. 97–100 (2015). https://doi.org/10.1109/ISVLSI.2015.61

[48] Nilsson, P., Shaik, A.U.R., Gangarajaiah, R., Hertz, E.: Hardware imple-
mentation of the exponential function using taylor series. In: 2014
NORCHIP, pp. 1–4 (2014). https://doi.org/10.1109/NORCHIP.2014.
7004740

[49] Dinechin, F.d., Pasca, B.: Floating-point exponential functions for dsp-
enabled fpgas. In: 2010 International Conference on Field-Programmable
Technology, pp. 110–117 (2010). https://doi.org/10.1109/FPT.2010.
5681764

[50] Zaninetti, L.: Padé approximant and minimax rational approximation
in standard cosmology. Galaxies 4(1) (2016). https://doi.org/10.3390/
galaxies4010004

[51] Bojdi, Z.K., Ahmadi-Asl, S., Aminataei, A.: A new extended pade approx-
imation and its application. Advances in Numerical Analysis (2013)

[52] Gupta, A., Gopakumar, A., Iyer, B.R., Iyer, S.: Padé approximants for
truncated post-newtonian neutron star models. Physical Review D 62(4),
044038 (2000)

[53] Wolfram: Padé Approximant. (2022). Wolfram. Online available under
https://mathworld.wolfram.com/PadeApproximant.html, Accessed on
12.12.2022

[54] codebrowser: E sqrt.c Source Code [glibc/sysdeps/ieee754/dbl-
64/e sqrt.c] - Codebrowser. (2022). codebrowser. Online available under
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/dbl-64/e sqrt.c.
html# ieee754 sqrt, Accessed on 13.12.2022

[55] Lawrence University: Newton’s Method. (2011). Lawrence Univer-
sity. Online available under http://www2.lawrence.edu/fast/GREGGJ/
Math420/Sections 2 3 to 2 5.pdf, Accessed on 15.12.2022

[56] Steihaug, T., Rogers, D.: Approximating cube roots of integers, after

https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/flt-32/e_expf.c.html
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/flt-32/e_expf.c.html
https://doi.org/10.1109/ISVLSI.2015.61
https://doi.org/10.1109/NORCHIP.2014.7004740
https://doi.org/10.1109/NORCHIP.2014.7004740
https://doi.org/10.1109/FPT.2010.5681764
https://doi.org/10.1109/FPT.2010.5681764
https://doi.org/10.3390/galaxies4010004
https://doi.org/10.3390/galaxies4010004
https://mathworld.wolfram.com/PadeApproximant.html
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/dbl-64/e_sqrt.c.html#__ieee754_sqrt
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/dbl-64/e_sqrt.c.html#__ieee754_sqrt
http://www2.lawrence.edu/fast/GREGGJ/Math420/Sections_2_3_to_2_5.pdf
http://www2.lawrence.edu/fast/GREGGJ/Math420/Sections_2_3_to_2_5.pdf

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 39

heron’s metrica iii. 20. arXiv preprint arXiv:1905.03547 (2019)

[57] Kosheleva, O.: Babylonian method of computing the square root: Jus-
tifications based on fuzzy techniques and on computational complexity.
In: NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy
Information Processing Society, pp. 1–6 (2009). https://doi.org/10.1109/
NAFIPS.2009.5156463

[58] Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method
for comparison on homomorphically encrypted numbers. In: Galbraith,
S.D., Moriai, S. (eds.) Advances in Cryptology – ASIACRYPT 2019, pp.
415–445. Springer, Cham (2019)

[59] Halley, E.: Methodus nova accurata & facilis inveniendi radices æqna-
tionum quarumcumque generaliter, sine praviæ reductione. Philosophical
Transactions of the Royal Society of London 18(210), 136–148 (1707)

[60] Muller, J.-M., Muller, J.-M.: Elementary Functions. Springer, Spring
Street, New York, NY 100013 (2006)

[61] Hart, J.F.: Computer Approximations. Krieger Publishing Co., Inc., 1725
Krieger Lane, Malabar, Florida, 32950 (1978)

[62] codebrowser: E log.c Source Code [glibc/sysdeps/ieee754/dbl-64/e log.c]
- Codebrowser. (2022). codebrowser. Online available under https:
//codebrowser.dev/glibc/glibc/sysdeps/ieee754/dbl-64/e log.c.html,
Accessed on 13.12.2022

[63] Thompson, I.: NIST Handbook of Mathematical Functions, edited by
Frank WJ Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark.
Taylor & Francis (2011)

[64] Kornerup, P., Muller, J.-M.: Choosing starting values for newton-raphson
computation of reciprocals, square-roots and square-root reciprocals. PhD
thesis, INRIA, LIP (2003)

[65] Montuschi, P., Mezzalama, M.: Optimal absolute error starting values
for newton-raphson calculation of square root. Computing 46(1), 67–86
(1991)

[66] Guerrero, V.M.: Time-series analysis supported by power transformations.
Journal of forecasting 12(1), 37–48 (1993)

[67] DescTools: Automatic Selection of Box Cox Transformation Parameter.
DescTools. Online available under https://search.r-project.org/CRAN/
refmans/DescTools/html/BoxCoxLambda.html, Accessed on 17.01.2023

https://doi.org/10.1109/NAFIPS.2009.5156463
https://doi.org/10.1109/NAFIPS.2009.5156463
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/dbl-64/e_log.c.html
https://codebrowser.dev/glibc/glibc/sysdeps/ieee754/dbl-64/e_log.c.html
https://search.r-project.org/CRAN/refmans/DescTools/html/BoxCoxLambda.html
https://search.r-project.org/CRAN/refmans/DescTools/html/BoxCoxLambda.html

Springer Nature 2021 LATEX template

40 De Bello Homomorphico: Homomorphic Basic Mathematical Functions

[68] Monash University, Clayton, Australia: Guerrero’s Method for Box
Cox Lambda Selection. Monash University, Clayton, Australia. Online
available under https://github.com/tidyverts/feasts/blob/master/R/
guerrero.R, Accessed on 21.03.2023

[69] Rob J Hyndman: Nybirths.dat. Rob J Hyndman. Online available
under https://robjhyndman.com/tsdldata/data/nybirths.dat, Accessed
on 21.03.2023

[70] GeeksforGeeks: Python — Box-Cox Transformation. (2022). Geeks-
forGeeks. Online available under https://www.geeksforgeeks.org/
box-cox-transformation-using-python/, Accessed on 9.03.2023

Appendix

Fig. 17: Visualization of the required iterations to calculate the minimum
function for values from different intervals with an accuracy of 0.1.

https://github.com/tidyverts/feasts/blob/master/R/guerrero.R
https://github.com/tidyverts/feasts/blob/master/R/guerrero.R
https://robjhyndman.com/tsdldata/data/nybirths.dat
https://www.geeksforgeeks.org/box-cox-transformation-using-python/
https://www.geeksforgeeks.org/box-cox-transformation-using-python/

Springer Nature 2021 LATEX template

De Bello Homomorphico: Homomorphic Basic Mathematical Functions 41

Fig. 18: Required times to determine min(a, b), where a, b ∈ [−10, 10] and
a ≤ b. The iteration depth of the iterative calculation procedure was varied
between 1 and 10. The x-axis represents the amount of the difference of a and
b.

	Introduction
	Background
	Related Work
	Methods for Computing Basic Mathematical Functions Homomorphic
	Method Selection for the Division Function
	Method Selection for the Exponential Function
	Method Selection for the Square Root Function
	Method Selection for the Logarithm Function
	Method Selection for the Maximum and Minimum Function

	Homomorphic Implementation of Basic Mathematical Functions
	Implementation of the Division Function
	Implementation of the Square Root Function
	Implementation of the Exponential and Logarithmic Function

	Evaluation
	Evaluation of the Division Function
	Evaluation of the Exponential Function
	Evaluation of the Square Root Function
	Evaluation of the Logarithm Function
	Evaluation of the Maximum and Minimum Functions
	Evaluation of Combinations of the Functions
	Concept of the Box-Cox Transformation
	Evaluation of the Homomorphic Implementation of the Box-Cox-Transformation

	Conclusion

