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In today’s world, circumstances, processes, and requirements for software systems are becoming increasingly 3
complex. To operate properly in such dynamic environments, software systems must adapt to these changes, 4
which has led to the research area of Self-Adaptive Systems (SAS). Platooning is one example of adaptive sys- 5
tems in Intelligent Transportation Systems, which is the ability of vehicles to travel with close inter-vehicle 6
distances. This technology leads to an increase in road throughput and safety, which directly addresses the in- 7
creased infrastructure needs due to increased traffic on the roads. However, the No-Free-Lunch theorem states 8
that the performance of one adaptation planning strategy is not necessarily transferable to other problems. 9
Moreover, especially in the field of SAS, the selection of the most appropriate strategy depends on the current 10
situation of the system. In this article, we address the problem of self-aware optimization of adaptation plan- 11
ning strategies by designing a framework that includes situation detection, strategy selection, and parameter 12
optimization of the selected strategies. We apply our approach on the case study platooning coordination and 13
evaluate the performance of the proposed framework.
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1 INTRODUCTION 26

In a world as dynamic as we find it today, where circumstances, processes, and requirements are 27
becoming increasingly complex, the challenges for software systems to be able to work in these 28
dynamic environments are also increasing. One of the most critical challenges for these systems 29
is to analyze their environment and to adapt to changes accordingly. The Self-Adaptive Sys- 30
tem (SAS) [11, 33] research area addresses these challenges. The SAS can change their behavior 31
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and deal with changes in their environment and the system itself [35]. In our daily lives, we are32
constantly in contact with SAS that aim to support and improve our way of life without us di-33
rectly noticing it. One SAS use case from Intelligent Transportation Systems (ITS) are electric34
traffic signals that have led to the development of real-time traffic control in urban areas [66]. An-35
other promising example for ITS is platooning, which addresses increased infrastructure needs36
resulting from increased traffic on roads. Due to advances in autonomous driving, an increased37
infrastructure need can be reduced through platooning, which is the ability of vehicles to travel38
with very close inter-vehicle distances, enabled by communication [52]. The use of platooning in-39
creases road throughput [4] and safety [52]. Platooning coordination is the process of assigning40
vehicles to platoons and controlling the platooning activities. The platooning coordination prob-41
lem is a multi-objective problem with several dimensions, since objectives of the drivers, aspects42
of the platoon, and global traffic need to be considered [57]. Platoons are usually coordinated us-43
ing platooning coordination strategies. This coordination is an example of SAS in ITS, as these44
coordination strategies can be considered as adaptation planning strategies that adapt the system,45
in this case the platoons, to their current state and environment.46

In line with the No-Free-Lunch theorem [65] the proper selection of adaptation planning strate-47
gies is a key factor in the success of any SAS, as the performance of one strategy may not necessar-48
ily be transferable to other application scenarios. In the year 1976, John R. Rice already defined the49
algorithm selection problem, which involves finding the best-performing algorithm for the current50
problem [51]. This leads to the idea of a mechanism that automatically selects the most promising51
algorithm that is also generalizable to be applied in a variety of applications. The observation of52
a situation-dependent adaptation planning strategy in self-adaptive systems [11, 17, 33], which53
was experimentally confirmed in our recent ACSOS publication [40], opens a wide area to which54
such a mechanism can be applied. Gathered observations can be used to apply different strategies55
in different situations or to adjust the parameters of a strategy. Furthermore, the knowledge can56
be used in combination with previous experiences to learn in which situation which strategy and57
which parameter configuration works best. This idea of combined reasoning and learning can be58
found in the Self-aware Computing (SeAC) research area, whose ideas and approaches will be59
applied in this work. There are several approaches to situation detection [8, 15, 22, 25, 43, 49, 53],60
algorithm selection [6, 26, 27, 29, 55], and parameter optimization [12, 16, 46, 62, 67] especially61
in the SAS literature. However, there is no integrated approach that combines these ideas into a62
mechanism that is generalizable and applicable to a variety of use cases.63

As the results of our ACSOS publication [40] confirm the situation-dependent performance of64
adaptation planning strategies, we propose a self-aware framework for selecting and optimiz-65
ing adaptation planning strategies in this article. The framework explicitly addresses situation-66
dependent behavior of these strategies by automatically identifying the current situation, selecting67
the most promising strategy, and optimizing the parameter of the selected strategies. In addition,68
the framework applies concepts from SeAC research and is able to learn and reason from previ-69
ous decisions and experiences. Our framework is intended for application in diverse use cases70
for which a specific adapter component enables generic applicability. To showcase the function-71
ality and analyze the performance of the framework, we apply it on the platooning coordination72
use case. Therefore, we define three platooning coordination strategies and apply Bayesian op-73
timization for parameter tuning. As evaluation environment, we use the platooning simulation74
framework presented in Reference [32] that integrates the platooning simulator Plexe [54], which75
is based on Veins [56] (including SUMO and Omnet++) with the tool Platooning Coordination76
System (PCS) [34].77

The remainder of this article is organized as follows: Section 2 discusses related work. Sec-78
tion 3 presents our running example platooning coordination and summarizes our previous results.79
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Section 4 proposes our self-aware framework before the subsequent sections present the details of 80
the Coordination (cf. Section 5), the Domain Data Model (cf. Section 6), the Situation Detection (cf. 81
Section 7), the Strategy Selection (cf. Section 8), and the Parameter Optimization (cf. Section 9) 82
components. Section 10 presents the evaluation of the framework on the platooning coordination 83
use case. Finally, Section 11 summarizes the article and outlines future work. 84

2 RELATED WORK 85

Several works exist that address situation-awareness, meta self-awareness, algorithm selection, 86
and meta optimization. In the following, we summarize most important findings in these areas 87
and discuss their relatedness to this work. A recent study by Calinescu et al. [8] has shown that 88
situation-awareness is the main driver for the development of self-adaptive systems and is there- 89
fore still an important research topic with many open research challenges. Endsley [15] presents 90
a theoretical model of situation-awareness in relation to dynamic human decision-making, build- 91
ing on research on naturalistic decision-making. Fredericks et al. [17] present an approach that 92
uses clustering to determine the current situation. They use this information for optimization 93
techniques to discover the optimal configuration for black-box systems. Liu et al. [43] propose 94
an approach to situation-awareness in autonomous driving that aims to improve the decision- 95
making process in an urban environment. Rockl et al. [53] propose an architecture for driver as- 96
sistance systems that uses increased environmental information to detect hazardous situations. 97
Hardes et al. [23] address communication problems in urban platooning scenarios by using the 98
concept of situation-awareness. Porter et al. [49] propose a software framework that learns op- 99
timal system assemblies in emergent software systems. Kang et al. [25] analyze which history 100
length and sensor range provide the best results for long-term situational awareness. Finally, we 101
analyze in our previous study the situation-awareness of adaptation planning strategies in the 102
platooning use case [40]. In this article, we use the mentioned publications as inspiration to cre- 103
ate a situation-awareness component for our framework (see Section 7). Especially, the work of 104
Fredericks et al. [17], which also uses clustering techniques to identify situations and our previous 105
paper [40], which is the foundation for our rule-based situation detection are highly related to our 106
approach. 107

According to Lewis et al. [41], meta-self-awareness “leads to the ability to model and reason 108
about changing tradeoffs during the system’s lifetime.” Cox et al. [13] research on meta-cognition, 109
which bridges psychology and computer science. Agarwal et al. [3] provide an approach that 110
allows computer systems to reason about their own knowledge. Perrouin et al. [48] propose a 111
rule-based approach to meta-self-awareness. They use layered MAPE-K control loops to optimize 112
adaptation decisions and make an adaptive system “resilient to a larger number of unexpected 113
situations” [48]. Gerostathopoulos et al. [18] propose the concept of meta-adaption for cyber- 114
physical systems, which improves the adaptation of a cyber-physical system by generating new 115
self-adaptation strategies at runtime. Kinneer et al. [28] propose the idea of re-using knowledge 116
from previous plans for optimization. They use a white-box approach with knowledge about the 117
system combined with a genetic algorithm to respond to unexpected adaptation scenarios. Similar 118
to the previous paragraph, we also use existing literature in meta-self-awareness as inspiration 119
for our framework. Especially the definition from Lewis et al. [41] and the idea of layered MAPE- 120
K loops from Perrouin et al. [48] led us to our concept of a generic optimization framework, as 121
presented in Section 4. 122

Kate Smith-Miles considers algorithm selection as learning problem [55]. She reviews the in- 123
terdisciplinary literature dealing with algorithm selection and presents the developments in this 124
research area. Kerschke et al. provide a survey on automated algorithm selection [26]. The sur- 125
vey covers early and recent work in this area and discusses promising application areas. Further, 126
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it includes an overview on related areas such as algorithm configuration and scheduling. Pascal127
Kerschke and Heike Trautmann contribute an approach for automatic model construction for algo-128
rithm selection in continuous black-box optimization problems [27]. The goal of this approach is129
to reduce the required resources of the selected optimization algorithms. Kotthoff et al. apply algo-130
rithm selection on the TSP problem [29]. They apply two existing TSP solvers and show that they131
perform complementary in different instances. The authors design algorithm selectors based on132
existing TSP features from the literature as well as new features. Bischl et al. propose a benchmark133
library for algorithm selection [6]. They define a standardized format for representing algorithm134
selection scenarios. Further, they provide a repository containing data sets from the literature to135
compare proposed approaches. The literature on algorithm selection already provides definitions,136
surveys, and a large set of approaches to address the algorithm selection problem. We used this137
literature in our research to generate an idea how the information of the current situation can138
be used to select a promising adaptation planning strategy and to learn from earlier decisions.139
However, we did not use any of the proposed methods directly in our component, as described in140
Section 8.141

Neumüller et al. [46] present an implementation of parameter meta-optimization for the heuris-142
tic optimization environment HeuristicLab Hive. Their approach minimizes the expert knowledge143
required to adapt the parameters of a meta-heuristic. In their evaluation, Neumüller et al. showed144
that the obtained parameter combinations in some cases deviate strongly from the usual settings.145
However, their approach mainly covers single-objective optimization, whereas a multi-objective146
problem can only be assessed using a normalized and weighted sum of objectives. Feurer et al. [16]147
improve the Sequential Model-based Bayesian Optimization used for tuning the parameters of ma-148
chine learning algorithms involving meta-learning. Using the knowledge from past optimization149
runs, they showed significant improvement in the Sequential Model-based Bayesian Optimization150
algorithm. Zhang et al. [67] address the problem of release planning, which means the process151
of deciding which features to integrate into the next version of a software release. The authors152
perform a study on various meta- and hyper-heuristics used for multi-objective release planning.153
They use different hyper-heuristic algorithms to decide on search operators for meta-heuristics154
to improve solution quality and compare their performance. Chis et al. [12] use the Framework155
for Automatic Design Space Exploration to compare the performance of different multi-objective156
meta-heuristics. The authors show that all algorithms find similar Pareto front approximations157
with good solution quality. Similarly, Vinctan et al. [62] deal with design space exploration by158
implementing a meta-optimization layer for the tool Framework for Automatic Design Space Ex-159
ploration. With this approach, it is possible to introduce a meta-optimization function that can160
use multiple meta-heuristics simultaneously by switching between them at simulation runtime.161
In the evaluation, the authors show that their meta-optimization approach leads to better results162
than running two different meta-heuristics independently and combining their results. The pre-163
sented literature of this paragraph covers the terms meta-optimization and parameter tuning. We164
used the existing literature to search for a promising approach for parameter tuning. According165
to the literature, we decided to integrate Bayesian optimization into our Parameter Optimization166
Component Section 9 as a promising starting point for our prototype.167

Another research direction related to this work is the area of Auto-ML. As the name sug-168
gests, automated machine learning focuses on automating machine learning mechanisms by using169
pipelines in combination with hyperparameter optimization to reduce manual effort. Reinbo, for170
example, is an Auto-ML framework that uses task pipelines and implements reinforcement learn-171
ing and Bayesian optimization to automatically determine the parameters [59]. A similar approach172
is used by Chai et al., who propose an Auto-ML framework that covers the common problem of173
data drift in machine learning [9]. Thornton et al. propose a mechanism for hyper-parameters174
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selection and optimization in the context of classification algorithms [60]. Finally, Li et al. attempt 175
to solve the problem of tuning hyper-parameters using a random search mechanism combined with 176
adaptive resource allocation and early-stopping [42]. Similar to the previous paragraph, the litera- 177
ture on Auto-ML also tries to optimize hyperparameter automatically. This literature also showed 178
us that Bayesian optimization is a promising technique when it comes to reducing manual effort 179
for parametrization. This insight further strengthened our decision to use Bayesian optimization 180
in Section 9. 181

This work delineates from the presented related work as follows: All mentioned approaches al- 182
ready cover aspects of our proposed framework, such as a rule-based meta-self-aware approach, 183
situation-awareness, determining the optimal configuration of a system, or performance compar- 184
ison of optimization techniques. However, there is no other work that integrates all these as- 185
pects into one framework to simplify and fasten development and application of self-adaptivity 186
of systems in combination with a separation of concerns. The combination of a multi-layered 187
framework with the LRA-M control loop and the integration of adaptation planning strategies, 188
situation-awareness, strategy selection, learning approaches, and optimization techniques make 189
the proposed approach unique and a valuable contribution to the research community. 190

3 RUNNING EXAMPLE: PLATOONING COORDINATION 191

In this section, we introduce our running example platooning coordination as meaningful example 192
of adaptation planning systems. Then, we summarize findings of our previous publication [40] and 193
discuss the contributions of this article. 194

Platooning is the ability of vehicles to travel with very close inter-vehicle distances, enabled 195
by communication [52]. The use of platooning can reduce fuel consumption through slipstream 196
effects, increases road throughput [4] through homogenization of traffic, and can reduce the like- 197
lihood of traffic congestion and accidents and, thus, increases safety [52]. In our use case, we 198
distinguish two levels of platooning [36]: 199

(1) Platooning control captures the control of a single vehicle on the lowest possible level (e.g., 200
distance maintenance, braking, overtaking). 201

(2) Platooning coordination includes the management of (i) the composition of a platoon, 202
(ii) inter-platoon interactions, as well as (iii) interactions between other vehicles and 203
platoons. 204

While the feasibility of platooning control is shown in diverse projects, the issue of platooning 205
coordination under real conditions and constraints still exists [36]. The platooning coordination 206
problem is a multi-objective problem with diverse dimensions, since objectives of the drivers, as- 207
pects of the platoon, and global traffic need to be considered [57] as well as fairness between par- 208
ticipants must be guaranteed, as the leading vehicle benefits less from slipstream effects [38]. To 209
address this problem, platooning coordination strategies aim at adapting the overall traffic system 210
with regards to the mentioned goals and objectives. 211

Following the observation from Reference [17] that the choice of the algorithm for adaptation 212
planning in self-adaptive systems [11, 33] depends on the situation of the system, we claimed 213
in our previous paper that the choice of the platooning coordination strategy also is situation- 214
dependent [40]. In the mentioned paper, we analyzed different platooning coordination strategies 215
and optimization algorithms for parameter tuning under varying traffic situations to show the 216
usefulness of combining a situation-dependent choice of the adaptation planning strategy with an 217
optimization of the parameters. Following this idea, our previous paper provided three contribu- 218
tions: (i) definition of a three-layered system model for self-aware optimization in self-adaptive 219
systems, (ii) analysis of a set of platooning coordination strategies to identify situation-dependent 220
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performance and strategy-dependent optimization techniques, and (iii) a reusable testbed for eval-221
uating meta-optimized adaptation planning strategies.222

The extensive case study of our previous paper [40] revealed three important findings regarding223
the selection of platooning coordination strategies, their parameterization, and the performance224
of optimization techniques in this context. First, we identified that the choice of strategy depends225
on the addressed objectives and none of the strategies performed best for all metrics. Second, we226
confirmed our claim that the performance of platooning coordination strategies depends on the227
current situation and its parametrization. Third, our analysis showed that Bayesian parameter op-228
timization improves the performance best and fastest compared to other optimization approaches.229
In summary, we concluded that the choice of the adaptation planning strategy but also the strat-230
egy’s parameters is not a “one fitting all” choice, especially in multi-objective scenarios.231

This article bases on our previous findings and extents the proposed contributions significantly.
Q2
232

We now propose a self-aware optimization framework for adaptation planning strategies that is233
not limited to the platooning use case but can be applied on a wide variety of self-adaptive use234
cases. This framework is able to analyze the current situation, select the most promising adaptation235
strategy, and perform its parameters. Further, it integrates self-aware concepts and learns and236
reasons from previous decisions and experiences.237

4 SELF-AWARE OPTIMIZATION OF ADAPTATION PLANNING STRATEGIES238

This section proposes the framework for self-aware optimization of adaptation planning strate-239
gies. Section 4.1 summarizes assumptions, and Section 4.2 presents the system model. Afterwards,240
Section 4.3 provides an overview of the framework composition, and Section 4.4 describes the use-241
case-specific adapter for linking the framework to any cyber-physical system (CPS) use case.242
Finally, Section 4.5 discusses the application of self-awareness concepts.243

4.1 Assumptions244

In this section, we state assumptions for the design of the framework to ensure broad applicability245
in various use cases. The following assumptions ensure the proper operation of the framework as246
well as the use case and define interactions between both systems. At the same time, they point247
out limitations that can be addressed in future work.248

First, we assume that use cases consist of an environment with operating entities and an adap-249
tation planning system. The entities operate based on their individual goals and actions, report250
observations regularly, and adhere to a given plan from the adaptation planning system. The adap-251
tation planning system monitors entities and plans adaptation actions based on global goals, where252
applied strategies and parameters can be changed at runtime. This structure and obedience of the

Q3
253

entities for a centralized decision-making management which can rely on the executing adap-254
tation planning system. Second, we assume a digitized use case that captures performance and255
monitoring data about itself and is able to transmit it to a defined management entity performing256
higher-level optimizations. At the moment, we assume a flawless communication and interaction257
between use case and management entity that makes a control mechanism for communication258
unnecessary. This assumption severely limits the direct applicability of the framework at the mo-259
ment. However, we are convinced that a reasonable choice of communication and transmission260
technologies can put this limitation into perspective. In the worst-case consideration with respect261
to no perfect communication, the framework no longer receives observations from the use case262
and can no longer make adaptation decisions. Additionally, the decisions may no longer be trans-263
mitted to the use case. However, this in no way restricts the general operation of the use case,264
as it executes a working adaptation strategy at all times even without adaptation decisions from265
the framework. Third, we assume that the adaptation planning system works independently of a266
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Fig. 1. Multi-layer architecture of the self-aware optimization framework. Layer 1 represents an adaptive

system, the adaptation planning system is shown in Layer 2, and Layer 3 shows the self-aware optimization.

higher-level optimization, i.e., the framework, and can be used with a previously defined strategy 267
algorithm and parameter set to remain functional even when management is not available. Finally, 268
we assume that the framework provides optimized decisions to the adaptation planning system 269
that retrieves and successfully implements these changes. This excludes the control of instructed 270
changes by the management and allows us to fully focus the development on the functionalities 271
of the framework. 272

4.2 System Model 273

This section introduces the generalized system model applicable on a variety of CPS use cases to 274
define the self-aware optimization framework. Our system model follows the three-layer approach 275
from Kramer and Magee [31] to incorporate the principles of maintainability and separation of 276
concerns. Further, it applies the Hierarchical Control Pattern from Weyns et al. in which “different 277
levels of abstraction [. . .] may operate at different time scales” [64, p.93]. Figure 1 presents the three 278
layers (i) application, (ii) adaptation planning, and (iii) self-aware optimization, which we explain 279
in the following: We refer to the bottom layer ➀ of the system model as the application layer 280
and consider real-world CPS use cases as the managed system. Entities of the use case monitor 281
themselves and their environment and report observations to the next layer. After an adaptation 282
planning cycle, the use case entities can receive adaptation actions to follow and execute. 283

The middle layer ➁, called adaptation planning, includes the adaptation planning system. It 284
receives observations from the application and applies a strategy with given parameter settings 285
to determine adaptation actions. We name the adaptation planning strategies this way to clearly 286
delineate them from other applied algorithms used in the framework, which is the third layer. In 287
fact, technically spoken, these adaptation planning strategies are algorithms that receive data from 288
the use case, analyze the proper operation of the use case, and plan adaptation decisions that will 289
be given to the use case. In terms of the platooning coordination use case, the entities in the use 290
case are the vehicles, and the platooning coordination algorithms can be considered as adaptation 291
planning strategies. We stick to this abstract naming of adaptation planning strategies to delineate 292

ACM Transactions on Autonomous and Adaptive Systems, Vol. 00, No. JA, Article 00. Publication date: November 2022.



TAAS-22-0016 acmart Trim: 6.75 X 10 in November 3, 2022 13:11

00:8 V. Lesch et al.

Fig. 2. Composition of the self-aware optimization framework. The framework contains the DDM for config-

uration, the Empirical Observations as a repository, a Coordination component that manages the workflow,

and the three main components Situation Detection, Strategy Selection, and Parameter Optimization.

from running algorithms in the framework and further remain independent from use case details.293
We assume that the user of the framework provides multiple strategies, customized for the partic-294
ular use case, to provide the possibility of strategy exchange when needed. The performance data295
of the selected strategy and application monitoring data is transferred to the next layer. After a296
self-aware optimization cycle, the adaptation planning layer may receive instructions to change297
the strategy parametrization or to replace the strategy.298

Finally, the third layer ➂ is called self-aware optimization and is responsible for optimizing299
strategy parameters and selecting the best-fitting strategy for the adaptation planning system. It300
incorporates three components: (i) Situation Detection, (ii) Strategy Selection, and (iii) Parameter301
Optimization. The Situation Detection component receives monitoring data, that is, the application302
observations and performance data from layer ➁ and categorizes the observations into a currently303
present situation. The Strategy Selection component uses this categorization, combines it with ex-304
perience from similar situations in the past, and selects the most appropriate adaptation planning305
strategy. Finally, the Parameter Optimization component tunes the parameters of the adaptation306
planning strategy. A knowledge base manages the set of known situations as well as correspond-307
ing decisions and continuously learns which parameter and algorithm combination fits best for308
the situations already experienced.309

4.3 Framework Composition310

This section presents the composition of the generically applicable self-aware optimization frame-311
work, which is the third layer of our presented system model. The framework consists of several312
interacting components, as depicted in Figure 2. In the following, we briefly introduce each com-313
ponent and state its main contribution to the framework and outsource detailed descriptions of314
the components to the following sections.315

Domain-Data-Model: The user of the framework can use the Domain-Data-Model (DDM) to316
configure the entire framework and all its components. It is the only part of the framework that the317
user needs to configure with use-case-specific information, and the framework considers the two318
lower levels as black box. The DDM contains information about the use case, context, parameter319
options, and performance metrics.320
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Empirical Observations: The second component of the framework is responsible for manag- 321
ing all sensor data received from the use case and is called Empirical Observations. It processes 322
incoming data and provides an interface for the other components to retrieve relevant data for 323
their current task. 324

Coordination: The central component of the framework is the Coordination, which is respon- 325
sible for the regular operation of the framework. This component is constantly active, regularly 326
invokes the other components of the framework, and delivers the required observation data. In 327
the event that one of the other components fails, this component can fall back to user-defined 328
rules to remain functional. Hence, this component’s main responsibility is the coordination of all 329
components so they work together in the intended way. This responsibility also includes tasks to 330
synchronize the components, their required data, and the decisions made by the framework. 331

We agree with the reviewer that our Coordination component handles synchronization tasks 332
between the different components and the received monitoring data. Its main responsibility is to 333
make all components work together. Without the Coordination component, the whole framework 334
would not be functional and hence, it has a crucial responsibility regarding the coordination of all 335
components 336

Situation Detection: The Situation Detection component receives the observation data of the 337
use case, such as the entities and their current state, and determines the current situation. So far, we 338
apply clustering algorithms but the component can be extended with other approaches if required. 339
After determining the situation, the component returns the situation ID. 340

Strategy Selection: The Coordination invokes the Strategy Selection component using the infor- 341
mation of the current situation. This component combines knowledge about the current situation 342
with experience from previous decisions in similar situations and determines the most appropriate 343
adaptation planning strategy for the current situation. It returns the decision to the Coordination 344
component. 345

Parameter Optimization The Parameter Optimization component receives the current param- 346
eter settings as starting point, historical data of the current situation, the corresponding adaptation 347
planning algorithm, and performance measures. It performs an optimization process to tune the 348
parameter setting for this adaptation planning strategy to the current situation. Afterwards, it 349
returns the settings to the Coordination component. 350

In addition to the general composition of the framework, we illustrate the workflow of the 351
framework as a sequence diagram in Figure 3. The user on the left side configures and starts the 352
framework using the DDM, sets up the use case, and configures it. The use case starts its operation 353
and sends the defined observations to the framework in regular intervals, regardless of the current 354
computational state of the framework. The Coordination component of the framework processes 355
incoming observations and forwards them to the Empirical Observations. After a certain number 356
of received observations, the Controller component triggers the first execution of the Situation De- 357
tection component and forwards relevant observation data to this component. In the meantime, 358
the Coordination component receives further observations from the use case, which are stored 359
but not used until the next round of execution. The Situation Detection returns the situation ID 360
to the Coordination, which updates the system model of the environment. Then, the Coordination 361
component triggers the Strategy Selection with filtered observation data containing only obser- 362
vations of the identified situation. This component applies model-based reasoning, determines 363
the most promising adaptation planning strategy, and returns it to the Coordination component, 364
which updates the system model. Finally, the observed data is filtered again to include only data 365
for the current situation and active strategy and triggers the Parameter Optimization. After the 366
Coordination component obtains this parameter setting, it updates the system model and sends 367
adaptation tasks to the adaptation planning system, which executes them. This step completes 368
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Fig. 3. Sequence diagram of the workflow of the self-aware optimization framework. The user configures

the framework and the use case sends observations. The framework processes the observations, identifies

the current situation, selects the strategy and parameter setting, and continuously learns and updates its

models.

one round of execution in the framework and after a predefined waiting time, the Coordination369
starts the next round.370

4.4 Use-case-specific Adapter of the Framework371

All the components of the framework are designed to be generically applicable to a variety of use372
cases enabled by the DDM definition of use-case-specific characteristics and an adapter that man-373
ages the connection between use case and framework as described in the following. This section374
briefly summarizes the required user actions to apply the framework for any use case.375

Figure 4 provides an overview of the architecture of the adapter required to connect the frame-376
work to any use case. The self-aware optimization framework is depicted at the top providing two377
REST APIs for receiving observations (on the left) and providing adaptation actions (on the right)378
that are defined using the DDM. The use case consisting of the two lower levels (see Section 4.2)379
is depicted at the bottom of the figure. The center of the figure presents two adapter components380
required to connect the components of the framework with use-case-specific system elements:381
(i) Data Preprocessing and (ii) Adaptation Executor. The Data Preprocessing component receives382
raw monitoring data from the use case, preprocesses this data, and potentially calculates additional383
aggregate metrics that may be required to assess the performance of the use case. The Adaptation384
Executor component, depicted on the center right of the figure, retrieves the adaptation decisions385
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Fig. 4. Use case adapter for the generic self-aware optimization framework. The use case with its two layers

adaptive system and adaptation planning are depicted at the bottom. It communicates with the Framework

by sending observations and retrieving adaptation actions. Additional Data Preprocessing and Adaptation

Executor components can provide a further abstraction level.

from the framework and converts them into specific adaptation actions for the use case. Since 386
both adapter components handle data transfer to and from the framework based on REST APIs, 387
the implementation effort required to apply them to a new use case is reduced. If the use case 388
already provides the possibilities to send monitoring data directly to the framework and retrieve 389
and execute adaptation decisions, then these adapter components may not be necessary. 390

In terms of communication load, the framework is designed to be able to reduce the overhead to 391
an absolute minimum. This includes the transmission of already aggregated performance metrics 392
from the use case to the framework and the adaptation information towards the use case. This can 393
be achieved by observing the use case within the second layer and preprocessing and aggregat- 394
ing the performance metrics to the used form for the framework. Additionally, these aggregated 395
metrics can be send batch-wise limited by the frequency the situation detection uses to identify

Q4
396

changing situations. All these mechanisms can help to reduce the communication load between 397
framework and use case. 398

4.5 Integrating Self-aware Computing 399

In this section, we present our concept of a self-aware optimization framework using a control loop 400
to discuss the integration of SeAC. In line with the used self-awareness terminology, we focus this 401
section on the corresponding LRA-M control loop [30]. Since this loop is a general-purpose concept 402
applicable to diverse systems, we modify it to explicitly include the functionalities of our proposed 403
framework, as shown in Figure 5. 404

The loop displays the system, also called the self, and its interfaces with the environment. It 405
interacts with the environment by (i) perceiving Phenomena and storing them as Empirical Ob- 406
servations, (ii) receiving Goals to be achieved, and (iii) executing Actions based on the decisions 407
made. The Empirical Observations are captured in the use case, i.e., the application layer of the 408
system model, and used in the Learn and Reason modules. During the ongoing learning process, the 409
observations are abstracted into models that contain knowledge about the two lower levels and 410
recognize new situations. We add the Situation Detection component into the Learn module, 411
which receives performance data of the managed use case with periodic observations and learns 412
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Fig. 5. Modified LRA-M control loop based on Kounev et al. [2017]. The basic LRA-M control loop is extended

to include analysis and the meta-optimization in the Learn module and planning through optimization in

the Reason module.

the impacts of the actions taken based on the current situation. Reasoning gives the framework413
the ability to consider which adaptation actions might be beneficial as reaction to changes in the414
environment or deteriorated performance values. Hence, we assign the two components (i) Strat-415
egy Selection, and (ii) Parameter Optimization to this module. The Strategy Selection component416
combines the information from Situation Detection and the current use case performance with the417
learned models about the use case and determines whether to keep the current strategy or switch418
to another existing strategy. The Parameter Optimization component applies optimization tech-419
niques using all observations from the current situation to tune the parameters for the selected420
strategy. These three components build the main contribution in terms of the proposed framework421
and are meant to be generically applicable to a wide range of suitable use cases. We present the422
details of all components in Sections 5 to 9.423

5 COORDINATION COMPONENT424

This section provides a more technical view of the Coordination component introduced in425
Section 4.3 and depicted in Figure 2. The pseudocode in Algorithm 1 summarizes the workflow of426
the Coordination component. The Coordination is responsible for initializing and invoking all other427
components of the framework. It processes incoming observations and updates the system models428
based on observations and the framework’s adaptation decisions. It is triggered at the start of the429
framework and instantiates all components of the framework (Lines 1–2) according to the DDM.430
Whenever the required number of new observations are received, the Coordination component431
triggers a new round of execution. As a first step, the component uses received data to derive432
additional information relevant to subsequent processing (Line 3). We use the Hypervolume [63]433
to reduce the observed performance indicators of the use case to a single performance value.434
This allows us to use any single-objective optimization technique in the Parameter Optimization435
component without requiring multi-objectiveness for this technique. Afterwards, the com-436
ponent stores the observation and newly derived information in the Empirical Observations437
component (Line 4).438

ACM Transactions on Autonomous and Adaptive Systems, Vol. 00, No. JA, Article 00. Publication date: November 2022.



TAAS-22-0016 acmart Trim: 6.75 X 10 in November 3, 2022 13:11

Self-aware Optimization of Adaptation Planning Strategies 00:13

ALGORITHM 1: Pseudocode workflow of the Coordination component.

Input : DDM, new observation, existing observations

1 if start of framework then

2 initialize components defined in the DDM;

3 derive additional information from the observation;

4 save new observation;

5 situation← invoke Situation Detection on all observations;

6 if situation could not be determined then

7 adaptations← apply fallback rules to all observations;

8 update system model with current adaptation decision;

9 send adaptations;

10 else

11 update system model with current situation;

12 if waiting time after previous adaptation action is over then

13 if same situation as before AND number of optimization attempts not met then

14 parameter← invoke Parameter Optimization on observations of current situation and

strategy;

15 else

16 strategy← invoke Strategy Selection on observations of current situation;

17 parameter← invoke Parameter Optimization on observations of current situation and

strategy;

18 update system model with current adaptation decision;

19 send adaptation decision to use case;

Then, the Coordination passes the new observation to the Situation Detection component (Line 5), 439
which applies clustering algorithms to identify the current situation. After the Situation Detection 440
identified the current situation, it returns the situation to the Coordination. If the available observa- 441
tion data is not sufficient for the clustering algorithm or the current situation is clustered as noise, 442
then the Situation Detection does not return a situation. 443

The Coordination component then checks whether the Situation Detection was successful (Line 6). 444
If the Situation Detection did not return a situation, then the Coordination component applies the 445
fallback rules to the current observations (Line 7). Then, the Coordination updates the model 446
with the most recent adaptation decision (omitting this step if fallback rules are applied) and 447
sends the adaptations to the use case (Lines 8–9). In case the Situation Detection returned a 448
valid situation (Line 10), the Coordination updates information about the current situation to the 449
model (Line 11). Afterwards, the Coordination checks whether the waiting time after a previous 450
adaptation action has expired (Line 12). This user-defined waiting time serves as cool-down pe- 451
riod for use case adaptations to take effect. If the waiting time is still active, then the current 452
round of execution ends and the Coordination waits for the next observations. If the waiting time 453
has expired, then new adaptation decisions can be sent to the use case. Therefore, the Coordina- 454
tion analyzes whether the currently active situation is similar to the previous one and whether 455
the number of optimization attempts is not met (Line 13). If this holds, then the Coordination re- 456
quests all observations of the current situation and strategy combination and passes them to the 457
Parameter Optimization. The Parameter Optimization computes a new set of parameters and re- 458
turns it (Line 14). However, if the number of optimization attempts has been exceeded, then this 459
indicates poor performance of the currently used strategy, which results in a search for a new, 460
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Fig. 6. Timescale of the components and their computations the Coordination invokes. Illustrated is a

use-case-specific time scale of 3,600 seconds where observations arrive every 30 seconds. Each observation

triggers an execution of the Coordination, which then decides which other components to invoke.

better-fitting strategy. In this case, or whenever the situation changed (Line 15), the Coordination461
requests all observations of the current situation and passes them to the Strategy Selection compo-462
nent (Line 16). This component uses this information to reason about the most promising strategy463
for adaptation planning and returns the selected strategy. Then, the Coordination requests all obser-464
vations of the current situation and the selected strategy to pass them to the Parameter Optimiza-465
tion (Line 17). This component performs an optimization to select the most promising parameter466
settings for this strategy and returns the results. The Coordination, in turn, uses the strategy de-467
cision and its parameterization to update the model of the system (Line 18). Finally, it sends the468
adaptation decisions including the strategy and the parameter setting to the use case (Line 19).469

To better understand the timing within the framework, we present an example timescale for470
invoking the three components Situation Detection, Strategy Selection, and Parameter Optimization471
in Figure 6. All timing values can be defined by the user with respect to the use case. Therefore,472
the timing presented here should only be considered as an example for demonstration and not as473
the fixed timing of the framework for all use cases. For simplicity, we assume that no situation474
changes occur in this example. The figure shows the time in seconds along the x-axis as a time475
scale, arranges the components above the time scale, and received observations are shown as ar-476
rows pointing to a specific time on the time scale. The use case in this example is configured to477
send observations at a regular interval of 30 seconds. With regards to our running example, we se-478
lected the minimum time interval of 30 seconds, as the existing entities (vehicles) need some time479
to continue driving and produce meaningful observation data. Each incoming observation triggers480
the Coordination that decides which other components are required at that time. At the beginning481
of the framework execution, the Coordination stores received observations and forwards them to482
the Situation Detection. However, since there is not enough data, the Situation Detection does not483
provide a situation and the Coordination applies the fallback rules. Once there is enough data (at484
second 600), the Situation Detection returns a specific situation ID. Then, the Parameter Optimiza-485
tion optimizes the parameters for the first time. Strategy Selection is omitted at this point, because486
we decided to first optimize the parameters of the current strategy to see if the performance of the487
strategy can be sufficiently improved by an optimized parameter setting. In the presented example,488
the number of optimization attempts per situation is set to five. Thus, after 3,600 seconds execution489
time, the Coordination has already triggered five optimization attempts and now additionally trig-490
gers the Strategy Selection. This results in the selected strategy being executed for at least one hour491
and optimized several times before a new selection is made, which allows the running example to492
perform adaptations and observe performance changes.493
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6 DOMAIN DATA MODEL 494

The DDM is a representation of the use case for the framework and serves as configuration file 495
enabling the generic applicability of the framework. This means that these settings strongly de- 496
pend on the chosen use case and can individually be enriched by use-case-specific parameters. The 497
DDM is defined using YAML, as it is easy to read for humans and can be used even without pro- 498
gramming knowledge. Therefore, it is well suited for the domain expert and provides separation 499
of concerns. The DDM consists of four main parts: (i) use case, (ii) context, (iii) parameter_options, 500
and (iv) performance_measures. In the following, we quickly describe each of these parts as the 501
details are of technical nature. The interested reader can find an extensive description of the DDM 502
in our technical report [37]. 503

Use Case Information: The first part of the DDM is called use case, which contains general 504
information about the use case. It contains the identifier name and a list of available adaptation 505
planning strategies called available_strategies. The Strategy Selection component of the framework 506
uses this list to determine the most promising strategy for the current situation. Finally, it contains 507
the fallback_rules containing a path to a Python file that defines fallback rules for the framework 508
that will be used whenever the Situation Detection is not possible. 509

Context: The second part of the DDM is called context and specifies the context data, i.e., ob- 510
servations, the use case sends to the framework. Furthermore, this part defines the configuration 511
of the Situation Detection component with the key situation_detection_settings. The data key con- 512
tains any number of context parameters from the use case with unique name-based identifiers 513
and a data_type specification (e.g., int and double). The situation_detection_settings key consists 514
of the two keys algorithm and settings. The algorithm key expects the definition of an available 515
situation detection algorithm. So far, four algorithms are available that can be easily extended in 516
the future. We describe them as well as their additional configuration parameters in more detail 517
in Section 7: RuleBased, K-Means, DBSCAN, and OPTICS. 518

Parameter Options: The third part of the DDM is called parameter_options. It defines tun- 519
able input parameters of the strategy and provides configuration information for the Strat- 520
egy Selection component. This part consists of the options for the input parameters and the 521
strategy_selection_settings. The options key contains an arbitrary number of input parameter 522
options for strategies defined using a data_type, min and max values, and an optional list 523
of relevant strategies. The strategy_selection_settings key consists of five mandatory keys: ob- 524
servations_between_adaptations, min_optimization_attempts, window_size, threshold_exceeds, and 525
method and one optional key called hypervolume_threshold. For a detailed explanation of these 526
keys, please refer to Section 8. 527

Performance Measures: Finally, the last part of the DDM is called performance_measures and 528
defines indicators of the performance of the defined use case. This part contains any number of per- 529
formance measures from the use case, with unique names. Each performance measure consists of 530
three mandatory keys data_type, higher_is_better, and reference_value, and an optional key called 531
threshold_value. Again, a detailed explanation of these keys can be found in Section 8. 532

7 SITUATION DETECTION COMPONENT 533

The Situation Detection component is responsible for identifying the current situation the managed 534
system of the use case is currently experiencing, as depicted in Figure 2. So far, this component 535
provides four methods: (i) rule-based, (ii) K-Means, (iii) DBSCAN, and (iv) OPTICS, which can be 536
easily extended. We selected these four methods to provide an opportunity to integrate domain- 537
knowledge using the rule-based method and three methods that do not require any domain knowl- 538
edge and operate unsupervised. We selected K-Means as a well-known clustering technique that 539
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can be useful when the number of different situations is known in advance. Further, we select540
DBSCAN and OPTICS as clustering techniques that require less parameters and, hence, reduce541
the preparation and parametrization tasks to a minimum. All methods operate on all context data542
available in the system. The Situation Detection component computes the current situation and543
returns a situation ID to the Coordination component.544

The situation detection process can be defined as a mathematical function mapping observation545
data from the use case to an integer value. This value represents the situation ID as defined in546
Equation (1) with a value range [−1,∞), where the value −1 indicates that the situation could not547
be detected. This could be due to: (i) insufficient amount of observation data, (ii) noisy observation548
data. A classification as noise could indicate a novel situation, or measurement inaccuracies in549
the use case. In the case that the Situation Detection classified the current situation as −1, the550
framework does not invoke any other components but applies user-defined fallback rules. If the551
returned situation ID is equal to or greater than zero, then the Situation Detection component552
has determined a valid situation and the Strategy Selection and Parameter Optimization can be553
invoked. The actual value of the situation ID does not allow for further interpretation regarding554
the similarity of situations. As simplified example, let us assume that the component identified555
three situations s1 = 0, s2 = 1, s3 = 10. This means that these three situations exist and are all556
different from each other. Moreover, the proximity of the values 0 and 1 does not mean that the557
situations s1 and s2 are more similar to each other than the situation s3.558

sit_det(context) =
⎧⎪⎨
⎪
⎩

−1, if situation is classified as noise

>= 0, otherwise
(1)

Since the use case regularly sends new observations, the amount of data grows consistently and559
might result in distinct assignment to situations during operation of the component. This means560
the situations identified during the last situation detection process may not be the same as those561
identified in the current process. Thus, the Situation Detection component updates its learned mod-562
els after each execution to match the latest findings to the observation data. Due to the permanent563
monitoring of the framework, the amount of observation data will grow over time. At the moment,564
the clustering techniques of the situation detection component use all available data for identify-565
ing the situation. In terms of the rule-based situation detection, only the latest observation is used.566
Since the clustering techniques use all available data, the number of observation points grows567
in time and a mechanism should be integrated to prune too old or irrelevant data. This should568
decrease the time to result of the situation detection and avoid getting stuck in too-old situations.569

We provide two types of situation detection mechanisms, one rule-based mechanism and three570
clustering algorithms that can be selected and configured by the user in the DDM. However, the571
component is not limited to these four techniques and can be extended easily with further or use-572
case-specific situation detection techniques due to its modular structure. The component receives573
the DDM and all existing observations and selects the configured algorithm for the Situation De-574
tection. In all cases, the component retrieves required parameters for the selected technique from575
the DDM and invokes the configured technique. All techniques return the situationIDs for all576
observations, that is, the cluster to which each observation in the dataset is assigned. The compo-577
nent then updates its situation model of all observed data with the latest classification and returns578
the situationID of the new observation to the Coordination component.579

The rule-based situation detection offers the possibility to integrate domain knowledge in the580
identification process of this component. For example, in the platooning use case, the user could581
specify frequent traffic volumes for which they know the best-performing configuration of the582
adaptation planning system. The user defines the rules in form of a Python file that is loaded and583
executed by the component. As long as the user provides a script that matches our definition in584
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Equation (1), this Python file could contain arbitrary complex operations. Further, the user could 585
adapt the given rules and include new domain knowledge gained from the framework operation. 586
In the context of this article, we omit updating the user-provided rule set with new knowledge 587
from previous executions, but this could be valid future work following existing approaches such 588
as References [10, 19, 47]. 589

In addition to the static rule-based situation detection, we provide three clustering-based situa- 590
tion detection methods. Due to their unsupervised learning methods, they can automatically detect 591
new situations and do not require domain knowledge [5, 17]. The first approach is k-means with a 592
predefined parameter k , or alternatively in combination with gap statistics [61] that automatically 593
selects the parameter k . When using gap statistics, the user needs to specify a minimum and max- 594
imum value for k, but no further user interaction is required. Since the performance of k-means 595
heavily depends on k and is not able to identify noise, we additionally integrate two density-based 596
clustering approaches. Therefore, we select DBSCAN and OPTICS, which do not require a num- 597
ber of clusters as input. Instead, DBSCAN requires the definition of min_samples and ϵ (eps) for 598
which domain knowledge from the user is required. OPTICS needs the parameters min_samples 599
and min_cluster_size, which can be determined by considering how long a situation is usually 600
active in the use case and how many observations are sent to the framework. Both density-based 601
clustering algorithms can classify observations as noise, which could happen when the use case 602
observes a new situation for a short time. 603

8 STRATEGY SELECTION COMPONENT 604

The Strategy Selection is the second component invoked by the Coordination component and is re- 605
sponsible for selecting the most promising adaptation planning strategy. This functionality is based 606
on the No-Free-Lunch Theorem for optimizations [65] and the identified situation-dependent be- 607
havior of adaptation planning strategies [40]. To do this, the framework uses experience gained 608
from previous executions of the strategies in similar situations. However, which algorithm per- 609
forms best in a new situation is not known a priori. Therefore, the component tests available 610
strategies and starts a new round of learning for that situation. A general definition of the algo- 611
rithm selection problem can be found in Reference [55]. In the following, we explain the workflow 612
of the Strategy Selection and refer to Algorithm 2. 613

Similar to the Situation Detection, this component also receives the DDM as input. Additionally, 614
it receives the currently active adaptation planning strategy, the number of optimization attempts 615
already performed for this strategy, and all available observations for the current situation con- 616
taining the performance measures of the strategy. First, the Strategy Selection sets the currently 617
active strategy as the selected strategy (Line 1). Then, it checks that enough optimization attempts 618
have been made to decide whether the strategy should be changed (Line 2). If the actual number 619
of optimization attempts has not reached the minimum number of optimization attempts, then 620
it means that the Parameter Optimization component might need more time to optimize the pa- 621
rameters of this strategy, and this component returns the currently active strategy (Line 3). If the 622
required number of optimization attempts has already been reached (Line 4), then this compo- 623
nent can select another strategy if the current strategy does not meet the performance expecta- 624
tions (Lines 5–8). Therefore, the component analyzes the performance of the strategy in the last 625
observations with respect to a defined threshold and counts the number of times the threshold is 626
exceeded within a defined window_size. The component provides two ways to define this threshold 627
(as explained later in this section): (i) hypervolume threshold and (ii) individual value thresholds. 628
Afterwards, it checks whether this number is above the predefined maximum allowed threshold 629
violations (Line 9). If a new strategy should be selected, then it checks whether all strategies were 630
already executed for this situation and selects the one yielding the highest average Hypervolume 631
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ALGORITHM 2: Pseudocode workflow of the Strategy Selection component.

Input :DDM, current strategy, number of optimization attempts already performed, all observations for

the current situation

1 strategy← current strategy;

2 if number of optimization attempts < DDM.min_optimization_attempts then

3 return strategy;

4 else

5 exceed_counter← 0;

6 for observation within DDM.window_size do

7 if thresholds exceeded then

8 exceed_counter++;

9 if exceed_counter >= DDM.threshold_exceeds then

10 if all strategies already executed for this situation then

11 strategy← best-performing strategy in history;

12 else

13 strategy← next strategy determined in DDM;

14 return strategy;

of performance measurements (Lines 10–11). Otherwise, if at least one strategy was not executed632
for this situation, then the Strategy Selection retrieves the next one from the DDM (Lines 12–13).633
This can be seen as a trial-and-error phase, since the decision cannot be based on experience and634
the component is forced to try new combinations. Finally, the component returns the selected635
strategy to the Coordination component (Line 14).636

The Strategy Selection component provides two possibilities to determine whether an algorithm637
meets the expected performance or should be modified. The first method the component offers is638
the Hypervolume threshold method, which reduces the performance measures to a single score.639
To calculate the Hypervolume, the user must specify reference values for each performance mea-640
sure in the DDM. However, the downside of this method is that it weights measures with a larger641
value range more heavily, so the user should apply a normalization mechanism before sending642
the performance measures to the framework. Still, the advantage of this method is that the perfor-643
mance of the overall adaptation planning system is condensed into one metric and the user only644
needs to specify one threshold value. The second method is to set individual value thresholds for645
each performance measure of the DDM. Whenever one of the performance measures exceeds its646
threshold, the Strategy Selection component counts this as a violation, regardless of any possibly647
perfect performance of the other measures. This method allows the user to have more impact on648
the individual performance measures and value ranges of these measures are less important. Addi-649
tionally, the user can easily extent the functionality of this component due to its modular design.

Q5
650

For instance, Machine Learning techniques such as Random Forests [21] can be integrated to learn651
a model for the Strategy Selection.652

9 PARAMETER OPTIMIZATION COMPONENT653

The last component is the Parameter Optimization component, which is invoked when a new654
strategy is determined, the situation changes, or the performance of the strategy decreases. This655
component uses Bayesian Optimization, which performed best in our preliminary study [40] to656
determine the best-performing parameter setting for the selected strategy. Therefore, it uses his-657
torical observation data of the same situation and strategy combination. If the situation-strategy658
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combination has not changed since the last invocation of this component, then the Bayesian Opti- 659
mization integrates only the last observation into the optimization model to compute new param- 660
eters. If either the situation or the selected strategy has changed since the last invocation, then the 661
optimization model must be re-trained using historical data of the new situation-strategy combi- 662
nation, if available. This allows the Parameter Optimization to react to the current situation and 663
strategy and learn from previous decisions. The Parameter Optimization component returns the 664
new parameter set for the strategy to the Coordination component, which forwards the adapta- 665
tions to the use case. 666

10 EVALUATION 667

In this section, we evaluate the proposed self-aware optimization framework. Since our framework 668
is a novel combination of approaches and there is no mechanism that incorporates situation de- 669
tection, algorithm selection and parameter optimization into one approach, we cannot compare 670
our framework to state-of-the-art methods. Hence, we focus on a feasibility study in this work 671
and plan an in-depth performance evaluation of all components isolated against state-of-the-art 672
mechanisms in the future. Therefore, Section 10.1 summarizes the methodology of our evaluation. 673
Sections 10.2, 10.3, and 10.4 evaluate the Situation Detection, Strategy Selection, and Parameter Op- 674
timization Component, respectively. Afterwards, Section 10.5 analyzes the overall performance of 675
the entire framework, and Section 10.7 discusses threats to the validity of the evaluation. 676

10.1 Methodology 677

In this work, we use the platooning coordination use case as a running example of our self-aware 678
optimization framework. We first define the applied scenarios, summarize the testbed, and specify 679
the framework configuration before proposing our baseline approaches. 680

Scenarios: We use a simulated road section of the German highway A8, which ranges from 681
the Stuttgart interchange to the Stuttgart-Degerloch exit. According to Süddeutsche Zeitung, this 682
section is one of the busiest highway sections in Germany [14]. In addition to the realistic model of 683
this highway section, we use real traffic data provided by the Federal Highway Research Institute 684
of Germany [1] to define the vehicle spawn rates for our simulation. After a detailed analysis of 685
the traffic values for each day of the week, we selected Wednesday as the representative week- 686
day and Saturday as the representative weekend day. Figure 7 shows the traffic volume for the 687
selected days between 12:00 AM and 2:00 PM. As the simulation of such high traffic volume re- 688
quires high computational power and shows long computation time, we decided to only simulate 689
the first 14 hours of a day. This time interval contains a typical traffic volume profile (including a 690
nightly low traffic volume, the first rush hour of a day, and the increasing traffic volume of a sec- 691
ond rush hour) for weekdays as well as weekends and, therefore, provides a good balance between 692
long runtime and comprehensive simulation. We set the platooning percentage of all vehicles to 693
70%, as we assume that not every vehicle is capable of platooning or drivers choose not to partic- 694
ipate. Furthermore, we set the maximum speed limit of cars to 120 km/h, which corresponds to 695
the actual speed limits on this section [7]. In our evaluation, we use two types of situation detec- 696
tion (OPTICS and rule-based situation detection) and two types of triggers for strategy selection 697
(Hypervolume- and threshold-based triggers), which results in four simulations per traffic profile. 698
Since our approach involves Bayesian Optimization that incorporates randomness, we run three 699
different random seeds in the traffic simulator SUMO for each simulation. 700

Testbed: We perform our simulations in the cloud of the Chair of Computer Science II at the 701
University of Würzburg. This cloud consists of 18 hosts, each running RHEL-7-8.2003.0.el7.centos 702
and oVirt Node 4.3.10 with KVM version 2.12.0. The cloud contains one large ProLiant DL380 703
Gen9 host with two Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz CPU sockets and eight cores per 704
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Fig. 7. Considered traffic scenarios of the framework evaluation for Wednesday on the left and Saturday on

the right. Total number of spawning vehicles is depicted as blue dashed line, cars are depicted as solid orange

line, and trucks are depicted as dotted green line.

socket. The remaining hosts are ProLiant DL160 Gen9 type with two CPU sockets of type Intel(R)705
Xeon(R) CPU E5-2640 v3 @ 2.60 GHz, eight cores per socket, and two CPU threads per core. We use706
three identical virtual machines for the simulations, which are deployed in our private cloud. Each707
virtual machine has two CPU sockets, each with 4 cores running at 2.6 GHz and 32 GB available708
RAM. We measure the simulation runtime of our scenarios, resulting in an average runtime of709
9.5 days for the Wednesday scenarios and 9 days for Saturdays, which is due to a lower traffic710
volume on Saturday. Since our goal for this article is a feasibility study, we do not measure and711
report any more performance metrics besides the overall runtime. Still, in the future an in-depth712
performance analysis is planned that incorporates detailed measurements for all components.713

Framework Configuration: As data input for the situation detection, we use the amount of714
vehicles on the road. We defined the rules for the rule-based situation detection according to the715
definitions for peak hours, medium, and low traffic volumes from the German city of Rostock [2],716
which also includes traffic volumes of highways around the city: We consider low, medium, and717
high traffic situation where the maximum number of vehicles on the road section is 120, between718
121 and 280, and above 280 vehicles, respectively. OPTICS requires the definition of the minimum719
number of points and the minimum cluster size, both of which we set to a value of 45, which we720
derived in a preliminary parameter study.721

Similar to the situation detection, we also evaluate two triggers for the strategy selection com-722
ponent: Hypervolume and individual thresholds. Both methods incorporate the four objective met-723
rics to assess the performance of the currently active strategy [57]: (i) throughput, (ii) time loss,724
(iii) platoon utilization, and (iv) platoon time. The Hypervolume requires the definition of a refer-725
ence value outside the range value of the metrics, which we set to −0.1. We set the Hypervolume726
threshold to 0.3 and consider a time window size of five, in which the Hypervolume must fall be-727
low the threshold at least three times to trigger the strategy selection. In line with our preliminary728
study [37, 40], we set the individual thresholds to: throughput = 0.5, time loss = 0.9, utilization =729
0.62, and platoon time = 0.3. We set these values to find a tradeoff between sensitive responses to730
degrading performance metrics and avoiding jitter. Further, we define the initial trial phase for the731
strategy selection to 10 optimization cycles and specify the order in which the platooning coordi-732
nation strategies are selected: Best-Distance, Best-Velocity, as well as Best-Distance-and-Lane. The733
Best-Distance strategy analyzes the distance between vehicle and possible platoons and selects the734
platoon with the lowest longitudinal distance. The Best-Velocity strategy defines the best735
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Table 1. Configuration of the Framework and Tested Strategies, Algorithms,

and Methods Used in the Evaluation

DDM Part Parameter Value

Use Case Available strategies Best-Distance, Best-Velocity, Best-Distance-and-Lane

Situation Detection Algorithm RuleBased, OPTICS

Strategy Selection Method Hypervolume, threshold

Min. opt. attempts 10

Hypervolume Reference values −0.10

Threshold 0.30

Time window size 5

Threshold exceeds 3

Thresholds Throughput 0.50

Time loss 0.90

Platoon utilization 0.62

Platoon time 0.30

Table 2. Configurations of the Baseline Approaches Used in the Evaluation

Parameter Name Best-Distance Best-Velocity Rules I Rules II

Advertising duration [m] 10 10 10 5
Search distance front [m] - 600 600 400
Search distance back [m] - 250 250 200
Max. speed difference [km/h] 35 - - -
Speed threshold lane 2 [km/h] 100 100 100 100
Speed threshold lane 3 [km/h] 130 130 130 130
Speed threshold lane 4 [km/h] 160 160 160 160

matching platoon by calculating the velocity difference between platoon and vehicle and selecting 736
the platoon with the lowest positive speed delta. The Best-Distance-and-Lane strategy not only cal- 737
culates the longitudinal distance of vehicle and platoon but penalizes the number of lanes between 738
them. 739

To evaluate the performance of our framework against a set of baseline approaches, we apply 740
the Best-Distance, Best-Velocity, and a rule-based strategy to the two scenarios. According to our 741
previous study [40], these two strategies performed best and should be the strongest competitors. 742
We design the rule-based strategy as gold standard strategy in which we combine the knowledge 743
from the previous study into if-then-else rules to analyze how well our self-aware framework per- 744
forms compared to the optimum. Table 2 summarizes the configurations of our baseline strategies 745
in line with our previous study [40]. The rule-based strategy applies the Best-Velocity strategy 746
with two configurations dependent on the number of vehicles and average car speed. It applies the 747
first configuration if the number of vehicles is below 500 and the car speed is above 125 km/h and 748
the second configuration otherwise. We also apply the same set of rules as fallback-mechanism in 749
our framework when the applied situation detection cannot detect the current situation.

Q6

750

10.2 Evaluation of the Situation Detection Component 751

In line with the workflow of our optimization framework, we start our evaluation with the situa- 752
tion detection component and analyze how well the implemented situation detection approaches 753
actually identify existing situations and their changes. Keep in mind that we currently only want 754
to analyze the feasibility of the proposed framework and its components and explicitly exclude a 755
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Fig. 8. Actual situations of the ground truth and detected situations of the rule-based and OPTICS approach

for Wednesday traffic data. The orange line represents the vehicle spawn rate at a specific point in time. The

blue dots represent the detected situation at the current point in time incorporating all previously observed

data points.

Fig. 9. Actual situations of the ground truth and detected situations of the rule-based and OPTICS approach

for Saturday traffic data. The orange line represents the vehicle spawn rate at a specific point in time.

performance analysis of all components and the framework as a whole. This also excludes details
Q7
756

computation time measurements. This component uses the current amount of vehicles on the road757
to identify a situation. Therefore, we analyze the detected situations during the simulation for both758
scenarios and compare the rule-based and OPTICS approaches to the ground truth. The ground759
truth uses the definitions of peak hours, medium, and low traffic volumes as described earlier.760
Figure 8 shows the ground truth for situation detection and the results of the component applied761
to the Wednesday scenario. The orange line represents the vehicle spawn rate, while the blue dots762
represent the cluster ID, that is, the detected situation, at a given time. The figure shows the cluster763
numbers assigned when the observation first occurred representing the situation based on which764
the framework makes its decisions. When comparing the identified clusters in Figures 8(a) and765
8(b) it can be seen that the rule-based situation detection component is close to ground truth, as it766
identifies all three situations, but assigns fewer observations to the peak traffic cluster. In addition,767
the rule-based approach does not detect the start of the second peak traffic cluster. The good per-768
formance of this approach was expected, since the rules were derived from the ground truth. The769
situation detection using OPTICS, as shown in Figure 8(c), identifies the situations using clustering770
mechanisms and identifies four different situations but considers some observations as noise. The771
four identified situations are less evenly distributed in terms of the number of observations they772
contain compared to the ground truth, as the length of the resulting blue bars strongly vary. Nev-773
ertheless, this mechanism is able to distinguish different situations as seen in the different height774
levels of the resulting blue lines even if they are not completely consistent with the ground truth.775

The results of the situation detection component applied to the Saturday scenario are depicted776
in Figure 9. Again, the orange line represents the vehicle spawn rate, and the blue dots represent777
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Fig. 10. Strategy selection on Wednesday traffic data. Blue points represent the detected situation at a spe-

cific point in time. The red line represents the selected adaptation planning strategy at a specific point in

time (R = Rules, BD = BestDistance, BV = BestVelocity, and BDL = BestDistanceAndLane).

the identified cluster ID. While the ground truth and rule-based approach show two identified 778
situations with a switch at around 7.5 hours, the OPTICS situation detection only shows one blue 779
line with some outliers after 10 hours. Hence, similarly to the Wednesday scenario, the rule-based 780
approach is close to the ground truth, which is not surprising, since the rules were derived from it. 781
However, the OPTICS approach shows a different behavior, as it is not able to identify at least two 782
different situations and clusters all observations into one situation. The poor performance of this 783
approach could be due to an unfavorable parameter configuration resulting from our preliminary 784
parameter study. Another factor could be the lower number of vehicles on the road compared to 785
the Wednesday scenario, which could lead to very similar observation data. Further evaluation 786
using more extensive scenarios and additional parameter studies may provide more insight in the 787
future. 788

In summary, this evaluation shows that the rule-based approach performs well against the de- 789
fined ground truth for both scenarios. The OPTICS approach identifies distinct situations in the 790
Wednesday scenario, but only a single situation for the Saturday scenario. The ground truth de- 791
rived rules work well but are a very rigid approach and do not provide flexibility for future changes. 792
A rule set must be defined at design time using expert knowledge and will not be further adapted. 793
However, the clustering approach OPTICS provides more flexibility but does not find the situa- 794
tions defined in the ground truth as reliably. In the future, extended simulations with, for example, 795
several days, could reveal more potential for improvements. In addition, rule learning methods 796
could be used to adapt the rule-based situation detection during runtime. 797

10.3 Evaluation of the Strategy Selection Component 798

In this section, we analyze the proper operation of the strategy selection component. We analyze 799
how a change in the identified situation affects the choice of strategy by presenting the selected 800
strategies in combination with the identified situation over time. Keep in mind that we currently 801
only aim at analyzing the feasibility of the proposed framework and its components and explicitly 802
exclude a performance analysis of all components and the framework as a whole. This also excludes 803
details computation time measurements. Therefore, Figure 10 shows the selected strategies for the 804
Wednesday scenario using OPTICS as the situation detection mechanism and the Hypervolume 805
trigger in Figure 10(a) as well as the individual thresholds as trigger in Figure 10(b). We decided 806
to use continuous line charts with vertical lines representing a strategy change to better visualize 807
the changed strategies especially in cases where the selection changes back and forth frequently. 808
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We base this evaluation solely on OPTICS, as it identifies different situations for the Wednesday809
scenario and is able to handle new situations not defined in a rule set.810

The blue points represent the determined situation, while the red line illustrates the selected811
strategy at a certain point in time, that is, the height of the line represents the selected strategy.812
The left figure shows that the strategy selection component selects a strategy and switches to the813
next one if the performance metrics fall below the thresholds and the triggers activate the selec-814
tion. When using the Hypervolume trigger, the strategy selection remains at the Best-Velocity and815
does not switch to the Best-Distance-and-Lane within the first six simulation hours compared to816
the individual threshold trigger. After this time, the observations are classified as noise by the situ-817
ation detection, which causes the strategy selection to revert to the rule-based strategy. Whenever818
new situations occur, the strategy selection starts with the Best-Distance strategy and tests its819
performance before switching to the Best-Velocity strategy. The results show that the individual820
thresholds trigger the strategy selection more often compared to the Hypervolume trigger, as the821
selection component examines the Best-Distance-and-Lane twice. In summary, the strategy test-822
ing phase at the beginning of new situations, the stabilization to well-performing strategy and the823
fallback to rules is the intended behavior of the framework and tells us that it is working properly.824
However, since the individual thresholds trigger the strategy selection more often, this may indi-825
cate that the individual thresholds are too restrictive and could be relaxed to avoid jitters between826
strategies.827

Figure 11 shows the results of the strategy selection component for the Saturday scenario using828
OPTICS and rule-based situation detection in combination with the Hypervolume and individual829
threshold triggers. The reason for using the rule-based situation detection in this evaluation is830
that OPTICS situation detection was not able to identify more than one situation for the Saturday831
scenario. Figure 11(a) presents the OPTICS and Hypervolume evaluation, Figure 11(b) presents the832
OPTICS and individual threshold evaluation, Figure 11(c) illustrates the rule-based and Hypervol-833
ume evaluation, and Figure 11(d) shows the rule-based and individual threshold evaluation. Again,834
the blue points represent the identified situation, and the red line represents the selected strat-835
egy at a given time. All figures show the desired exploratory behavior of the strategy selection836
when a new situation occurs due to the step-wise strategy change at the beginning. If a strategy837
performs well, then it is not replaced and remains active until the triggers indicate a performance838
degradation. Since the OPTICS situation detection identifies only one situation and classifies some839
observations as noise, it shows a clear step-wise strategy change and a reversion to the rule-based840
strategy when the situation detection reveals noise. When using the rule-based situation detec-841
tion, the strategy selection is more stable, since no fallback mechanisms are required. However,842
Figure 11(c) shows an anomaly in the strategy selection behavior, as the detection of a new situa-843
tion does not trigger a new exploration of strategies after around eight hours. A detailed analysis844
of this behavior led us to the conclusion that the detection of a situation change was not perfectly845
aligned with the strategy selection component and, hence, resulted in a lost situation change. Thus,846
the currently active strategy, that is, the Best-Velocity, remains active until about 11 hours of sim-847
ulation time. At this point, the Hypervolume trigger indicates a performance degradation of the848
current strategy and the strategy selection selects the Best-Distance strategy. However, it is dis-849
carded after the initial trial period and the strategy selection switches to the Best-Distance-and-850
Lane strategy. The same lost update of a new situation can be observed in Figure 11(d). However,851
this figure shows a faster discarding of the currently active strategy, similar to the behavior in852
Figure 11(b). This also indicates that the individual thresholds might be too restrictive and could853
be relaxed in the future to produce a more stable result.854

In summary, this evaluation shows that both algorithm selection trigger methods work prop-855
erly and activate the algorithm selection when the performance of the currently active strategy856
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Fig. 11. Strategy selection on Saturday traffic data. Blue points represent the detected situation at a specific

point in time. The red line represents the selected adaptation planning strategy at a specific point in time

(R = Rules, BD = BestDistance, BV = BestVelocity, and BDL = BestDistanceAndLane).

deteriorates. While the Hypervolume threshold provides a more stable result, the individual thresh- 857
olds appear to detect performance degradation earlier. Therefore, the individual thresholds explore 858
more possible strategies, but also result in higher jitter compared to the Hypervolume. However, 859
the definition of the individual thresholds can be adjusted in future evaluation studies to achieve 860
a tradeoff between detecting performance degradation quickly and reducing jitter. All in all, both 861
methods work properly and are capable of triggering the algorithm selection. 862

10.4 Evaluation of the Parameter Optimization Component 863

We evaluate our optimization component by analyzing the course of the Hypervolume metric used 864
by this component to optimize the parameter configuration of the current adaptation planning 865
strategy. Keep in mind that we currently only want to analyze the feasibility of the proposed 866
framework and its components and explicitly exclude a performance analysis of all components 867
and the framework as a whole. This also excludes details computation time measurements.

Q8
868

The used Hypervolume metric (cf. Reference [63]) accumulates the platooning metrics into one 869
objective metric that can be used by the single-objective Bayesian Optimization. Figure 12 shows 870
evaluations of the Saturday scenario using rule-based situation detection and Hypervolume 871
as trigger for the strategy selection component on the left (Figures 12(a) and 12(c)). The right 872
side of the figure shows measurements for the Saturday scenario using OPTICS as situation 873
detection mechanism and individual thresholds as triggers for strategy selection (Figures 12(b) 874
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Fig. 12. Evaluation of the optimization component on the Saturday scenario. The left side represents configu-

rations using the rule-based situation detection and Hypervolume triggers. The right side illustrates OPTICS

situation detection and individual threshold triggers (R = Rules, BD = BestDistance, BV = BestVelocity, and

BDL = BestDistanceAndLane).

and 12(d)). The top figures show the identified situations in blue in combination with the selected875
strategies in red. The lower figures summarize the course of the Hypervolume metric, that is, the876
performance indicator of the platooning coordination strategy. The course of the Hypervolume877
metric appears to be very fluctuating for both configurations during the simulation time. This was878
expected behavior, since the optimization component needs some time to learn which parameter879
setting works well for which strategy and situation. Therefore, it makes most sense to analyze880
time windows of the Hypervolume progression where the identified situation and strategy remain881
stable. This is also a reason for choosing Saturday scenarios for this evaluation, as traffic volumes882
do not fluctuate as much as in Wednesday scenarios, which allows for longer time frames per sit-883
uation and strategy. When analyzing the first stable phase on the left between 2.5 and 7.5 hours of884
simulation time, the Hypervolume starts with a value of about 0.5 Hypervolume points and drops885
to 0.3 Hypervolume points. Then, it stabilizes back to about 0.5 Hypervolume points, indicating886
that the optimization component has explored different parameter settings and stabilized to a887
well-performing set of parameters. As discussed earlier, the change in the situation is lost at about888
7.5 hours of simulation time, resulting in a sharply decreasing trend in the Hypervolume. This889
leads to the extended Hypervolume threshold that triggers the strategy selection at about 11 hours890
of simulation time. The other configuration, depicted on the right, captures OPTICS and individual891
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thresholds. In this evaluation, we can analyze the Hypervolume score for the simulation period 892
starting at 4 hours up to 8 hours of simulation time. The Hypervolume score shown on the bottom 893
right starts at a low value of around 0.2 score points, but quickly increases to a value of 0.4 score 894
points. This low start value is due to the recent strategy change from the Best-Distance-and-Lane 895
strategy, which was discarded in favor of the Best-Velocity strategy after its initial trial phase. 896
After that, the Hypervolume score shows a slight increase to a value of about 0.58 score points, but 897
then decreases again to values between 0.4 and 0.5 score points. This indicates that the Optimiza- 898
tion component finds better parameter settings for the selected strategy and then explores new 899
parameter settings that unfortunately lead to worse Hypervolume values. This triggers the strat- 900
egy selection, and, since all existing strategies have already been explored, the best-performing 901
strategy will be selected even if it again triggers strategy selection and parameter optimization. 902

In summary, this evaluation shows us that the Optimization component has the potential to 903
optimize the parameter settings of the adaptation planning strategies, as the Hypervolume score 904
remains stable and shows slight increases in stable performance for situation and selected strategy. 905
However, negative effects also occur when the Optimization component explores new parameter 906
settings, which may lead to worse results compared to the previous settings that performed well. 907
This indicates that the stable phases of identified situations and selected strategies, that is, the 908
time for the Optimization component to optimize the parameter settings, may be too short to 909
find stable configurations with good performance. Extended evaluations over several days or even 910
weeks could provide more insight into the required amount of experience for the Optimization 911
component and increase the overall performance of this component. 912

10.5 Evaluation of the Entire Framework 913

In our final evaluation, we analyze the overall functionality of the framework and perform an 914
integrative evaluation using all components at the same time. Keep in mind that we currently 915
only want to analyze the feasibility of the proposed framework and its components and explic- 916
itly exclude a performance analysis against state-of-the-art approaches of all components and the 917
framework as a whole. This also excludes details computation time measurements. First, we com- 918
pare the four defined configurations of the framework with the three baselines in terms of the 919
four platooning metrics of throughput, time loss, platoon utilization, and platoon time. Table 3 920
presents the mean and standard deviation results for these metrics for the Wednesday scenario 921
and Table 4 summarizes the results for the Saturday scenario for the three repetitions. We high- 922
light the best values of each platooning metric for the baseline group and the framework group in 923
bold. In both evaluation scenarios, the throughput metric results for all baselines and framework 924
configurations are very close, with values between 0.9943 and 0.9952 and low standard deviations. 925
In the Wednesday scenario, the Best-Distance baseline and rule-based situation detection com- 926
bined with Hypervolume thresholds perform best on the throughput metric with values of 0.9952 927
and 0.9946, respectively. In the Saturday scenario, all configurations of the framework perform 928
equally well, while the Best-Velocity baseline performs best on the throughput metric with values 929
of 0.9950 and 0.9951, respectively. All applied configurations and baselines show higher diversity 930
for the time loss metric, ranging from 0.8992 to 0.9122 for Wednesday and from 0.9255 to 0.9411 931
for Saturday. Rule-based situation detection combined with individual thresholds performs best for 932
this metric among all configurations tested, with a value of 0.9122 and 0.9333, but achieves a lower 933
value compared to the Best-Velocity baseline, with a value of 0.9199 and 0.9411 for Wednesday and 934
Saturday, respectively. Results for the platoon utilization metric range from 0.6251 to 0.7176 and 935
from 0.5999 to 0.7101 for Wednesday and Saturday, respectively. For this metric, the fallback rule 936
baseline among the baselines and the OPTICS situation detection in combination with Hypervol- 937
ume and individual thresholds performs best. Finally, the results for the platoon time metric range 938
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Table 3. Evaluation Summary of the Average and Standard Deviation for Performance Metrics

Throughput, Time Loss, Platoon Utilization, and Platoon Time for the Wednesday Scenario

Configuration Throughput Time Loss Platoon Utilization Platoon Time

mean std mean std mean std mean std

Best Distance 0.9952 0.0 0.8992 0.0 0.6251 0.0 0.4908 0.0

Best Velocity 0.9942 0.0 0.9199 0.0 0.6973 0.0 0.6109 0.0

Fallback Rules 0.9950 0.0 0.9198 0.0 0.7176 0.0 0.6518 0.0

OPTICS & Hv 0.9943 0.0003 0.9122 0.0022 0.6690 0.0030 0.5442 0.0090

Rule-based & Hv 0.9946 0.0004 0.9102 0.0011 0.6647 0.0039 0.5302 0.0076

OPTICS & Th 0.9945 0.0003 0.9110 0.0014 0.6566 0.0072 0.5275 0.0119

Rule-based & Th 0.9943 0.0003 0.9108 0.0003 0.6343 0.0109 0.5005 0.0083

The best values are shown in bold (Hv = Hypervolume, Th = Threshold).

Table 4. Evaluation Summary of the Average and Standard Deviation for Performance Metrics

Throughput, Time Loss, Platoon Utilization, and Platoon Time for the Saturday Scenario

Configuration Throughput Time Loss Platoon Utilization Platoon Time

mean std mean std mean std mean std

Best Distance 0.9945 0.0 0.9255 0.0 0.5999 0.0 0.4522 0.0

Best Velocity 0.9951 0.0 0.9411 0.0 0.6942 0.0 0.5833 0.0

Fallback Rules 0.9950 0.0 0.9401 0.0 0.7101 0.0 0.6199 0.0

OPTICS & Hv 0.9949 0.0001 0.9309 0.0004 0.6360 0.0019 0.4918 0.0022

Rule-based & Hv 0.9950 0.0001 0.9297 0.0013 0.6367 0.0087 0.4880 0.0137

OPTICS & Th 0.9950 0.0000 0.9323 0.0012 0.6511 0.0065 0.5169 0.0159

Rule-based & Th 0.9950 0.0001 0.9333 0.0024 0.5677 0.0504 0.4182 0.0520

The best values are shown in bold (Hv = Hypervolume, Th = Threshold).

from 0.4908 to 0.6518 and from 0.4182 to 0.6199 for Wednesday and Saturday, respectively. Again,939
the fallback rules baseline performs best for both scenarios, and the OPTICS situation detection940
with Hypervolume and individual thresholds performs best among the framework configurations.941
The combination of the close average values for all metrics and the small standard deviations does942
not suggest significant advantages for some configurations. However, this indicates that the frame-943
work performs comparably well when considering the results of the baseline, which was designed944
and configured with complete prior knowledge based on the preliminary situation-dependency945
study we published [40].946

In addition to evaluating individual platooning metrics, we also analyze the progression of the947
performance over simulation time. Therefore, Figure 13 presents the mean Hypervolume area948
under curve over simulation time for all configurations and baseline strategies for Wednesday949
(Figure 13(a)) and Saturday (Figure 13(b)). The baseline strategies are depicted as gray lines with950
a dotted line for the Best-Velocity, a dashed line for Best-Distance, and a dashed and dotted line951
for the rules baseline. The colors represent the different configurations. Both plots show a similar952
result: The Best-Velocity and rules baseline perform best, with a stable increasing gradient of the953
area under curve, while the Best-Distance baseline performs worst. The curves of the framework954
configurations do not increase at a constant rate but show more fluctuations in the gradient. All955
lines are close to each other, but more noticeable differences appear as the simulation progresses.956
The OPTICS and rule-based situation detection combined with the Hypervolume trigger, perform957
best for Wednesday. For the Saturday scenario, both configurations perform well again, but958
OPTICS in combination with individual thresholds outperforms them slightly from 10 hours959
of simulation time. For both scenarios, the rule-based situation detection in combination with960
individual thresholds performs worst of all configurations.961
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Fig. 13. Mean area under curve evaluation over time for the Hypervolume score of all tested configurations

and the baselines on both scenarios. The different colors represent the tested configurations, the x-axis shows

the simulation time, and the area under curve is depicted on the y-axis.

The fact that the Best-Velocity and the rules baseline perform best is in line with our case 962
study [40]. This can be explained due to our extensive examination of existing baseline strategies, 963
their configuration, and their performance in various situations and their combination as gold 964
standard strategy. Using this information, we then defined the baseline strategies to represent the 965
best possible performance when complete knowledge of situations, strategies, and configuration 966
was available at design time. However, such intensive studies are not feasible, especially in such 967
dynamic, adaptive use cases. Moreover, it is in the nature of the framework to perform worse than 968
the gold standard, since it needs some time to explore possible strategies and configurations before 969
it can learn and profit from earlier decisions. The better performance of all framework configura- 970
tions compared to the Best-Distance baseline shows that the framework is able to identify and 971
select a strategy that works well. This reduces the need of expert knowledge or extensive case 972
studies for a use case and, hence, provides a valuable contribution to self-aware optimization. 973

10.6 Discussion of Further Use Cases 974

In this section, we want to highlight the generic applicability of the proposed framework by show- 975
casing further use cases for which the framework might be beneficial. The first two use cases can 976
be considered as CPS use cases in the transport and logistics domain, while the third use case 977
originates from the cloud computing research area. 978

The first use case we want to discuss is the vehicle routing problem (VRP). The classical VRP 979
specifies the assignment of customer orders to vehicles and the optimization of their tours [20], 980
which refers to solving the underlying Traveling Salesman Problem (TSP). Hence, the use case 981
for the framework would be the customer orders, vehicles, and tours. Any optimization algorithm 982
to solve the VRP can be referred to as adaptation planning strategy. The framework would then 983
learn from observed metrics such as the number of orders, the geographical distribution of cus- 984
tomers and others, which optimization algorithm, that is, the adaptation planning strategy, would 985
fit best for the current situation. 986

The second use case is located in the logistics area and covers the optimal planning of ware- 987
houses. Working within a mezzanine warehouse consists of two main tasks: (i) filling the storage 988
with goods (storage assignment) and (ii) picking items out of the storage (order picking) [39]. 989
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Using the terminology of this article, the warehouse, goods, pickers, and orders are entities in the990
use case. Any optimization algorithm to plan the storage of goods or the order picking can be991
considered as adaptation planning algorithms. The framework would receive observation metrics992
such as the number of goods to be stored, the fill rate of the warehouse, the number of pickers,993
and others. Then, the framework would learn over time which optimization algorithm, that is,994
which adaptation planning strategy, fits best for the current situation of the warehouse.995

Using the last use case, we want to move on from the logistics and transport domain to a com-996
pletely novel domain that is cloud computing. This particularly highlights the broad applicability997
of the proposed framework as a concept. The use case from the cloud computing domain we want998
to discuss is auto-scaling. The idea is “to have a system that automatically adjusts the resources999
to the workload handled by the application” [44]. In the terminology of the framework, the re-1000
sources that would be adjusted could be virtual machines. The auto-scaler, that is, the adaptation1001
planning strategy, analyzes the application and decides when and how many resources to adjust.1002
The framework would receive observation metrics, such as the number of running resources, the1003
number of requests to the application, and others and learn which adaptation planning strategy,1004
that is, which auto-scaler, fits best for the current situation of the application.1005

10.7 Threats to Validity1006

In the course of our article, we proposed a set of assumptions that must be met for the framework to1007
be applicable. We already discussed these assumptions in Section 4.1. In addition, we now present1008
and discuss limitations as well as threats to the validity of our evaluation.1009

First, our framework is intended for application in a broad variety of use cases and therefore pro-1010
vides a use-case-specific adapter to apply it to other examples. However, we limit our evaluation1011
to platooning as representative use case from the ITS domain and did not show results from other1012
use cases. Still, we are convinced that as long as all stated assumptions are met, the framework can1013
also be applied in other use cases and domains due to the provided use case adapter. Therefore, we1014
discuss three additional use cases for which the application of the framework seems to be useful1015
in Section 10.6. Second, we currently only provide a basic algorithm for the strategy selection as1016
well as a limited set of clustering techniques and optimization approaches. We decided to imple-1017
ment these algorithms and approaches, as the selected clustering techniques are commonly used1018
in such scenarios, and the Bayesian optimization performed best in our previous publication [40].1019
This selection allows us to showcase the potential. However, we do not limit the frameworks func-1020
tionality to them but rather designed the framework to be modular and would like to encourage1021
future users to extend the framework or individual components and algorithms. Third, we only1022
used one parameter setting for the framework to assess the functionality and performance. Again,1023
we derived this configuration based on our extensive previous case study in platooning and are1024
convinced that this is a good example configuration. Still, we do not claim that we defined the per-1025
fect configuration and further evaluation runs can help analyze the validity of the configuration1026
or to find better configurations. Fourth, we limited the time horizon of the scenarios to the first1027
14 hours of a day and used only one road segment as example. We decided to use the first 14 hours1028
of a day to trade off a long computation time with a minimum set of different traffic situations1029
covered. The selected time horizon includes a low traffic volume at night, a traffic increase until1030
the first rush hour, the decrease to a daytime medium traffic flow, and a final increase towards1031
the second rush hour. Hence, we believe that this time horizon provides sufficiently diverse traffic1032
situations to analyze the functionality of all components. We chose the road segment in Germany,1033
because it was already used in our previous study and we could thus directly transfer the results1034
and gold standards. Evaluations on other road segments can be performed additionally at any time1035
to show the validity of the results. Finally, we limit our evaluation on analyzing the feasibility of the1036
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proposed framework. We explicitly exclude an in-depth performance analysis of the framework 1037
and its components for this article. Nevertheless, a performance analysis against state-of-the-art 1038
approaches is an important evaluation we plan as next step for the future. 1039

We acknowledge that all of the aforementioned threats might limit the transferability of our 1040
evaluation results to other use cases. However, we are convinced that we were able to showcase the 1041
functionality and usefulness of the proposed framework and can conclude that it has the potential 1042
to optimize adaptation planning systems. 1043

11 CONCLUSION 1044

In today’s world, circumstances, processes, and requirements for software systems are becoming 1045
increasingly complex. To operate properly in such dynamic environments, software systems must 1046
adapt to these changes, which has led to the research area of Self-Adaptive Systems (SAS). Pla- 1047
tooning is one example of adaptive systems in Intelligent Transportation Systems, which is the 1048
ability of vehicles to travel with close inter-vehicle distances. This technology leads to an increase 1049
in road throughput and safety, which directly addresses the increased infrastructure needs due to 1050
increased traffic on the roads. However, the No-Free-Lunch theorem states that the performance 1051
of one platooning coordination strategy is not necessarily transferable to other problems. More- 1052
over, especially in the field of SAS, the selection of the most appropriate strategy depends on the 1053
current situation of the system. In this article, we address the problem of self-aware optimization 1054
of adaptation planning strategies by designing a framework that includes situation detection, strat- 1055
egy selection, and parameter optimization of the selected strategies. We apply rules and clustering 1056
techniques to identify the current situation, as well as Bayesian Optimization to tune the selected 1057
strategy’s parameters. Further, we learn models of the system and its environment and reason on 1058
future decisions based on these models. Finally, we apply the proposed framework on the platoon- 1059
ing coordination case study and evaluate the performance of all components of the framework as 1060
well as the overall performance of the whole framework. 1061

In the future, we plan to further enhance the components of the framework: First, the coordina- 1062
tion component processes the observations from the use case and triggers the other components. 1063
However, with increasing runtime of the framework, the amount of data collected from the use 1064
case increases. This leads to large datasets that do not necessarily contribute to good performance 1065
of the overall system, as the information may become outdated [45, 58]. Hence, it is useful to 1066
develop a strategy on how to discard or aggregate the increasing amount of data. Further, the situ- 1067
ation detection currently comprises a rule-based and a clustering approach, but is not able to adapt 1068
the rule set with learned insights. Hence, a rule-learning mechanism could be applied to improve 1069
the rule base of the situation detection. Currently, the strategy selection learns which strategy to 1070
choose based solely on all observations on the current situation. However, a global mechanism 1071
could provide benefits to the component by adjusting the order of strategies based on the perfor- 1072
mance of strategies previously experienced in all situations. This could reduce the trial-and-error 1073
phase for new situations and, thus, shorten the time to convergence. The parameter optimization 1074
component currently provides the hypervolume metric and individual thresholds. However, for 1075
other use cases, other techniques for multi-objective optimization could be useful, such as the 1076
concept of Pareto-optimality to provide the operator with a set of equally well-performing config- 1077
urations. Further, approaches to reduce the search space for parameter tuning such as References 1078
[24, 50] could speed up the component. In general, we could apply forecasting techniques [68] to 1079
anticipate future developments of the system and its environments to proactively plan adaptations. 1080
In summary, we developed the framework using components, which allows for dynamic evolution 1081
of each component according to the individual requirements and best practices of the targeted use 1082
case. 1083
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