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Abstract: The production of food is highly complex due to the various chemo-physical and biological
processes that must be controlled for transforming ingredients into final products. Further, production
processes must be adapted to the variability of the ingredients, e.g., due to seasonal fluctuations of
raw material quality. Digital twins are known from Industry 4.0 as a method to model, simulate, and
optimize processes. In this vision paper, we describe the concept of a digital food twin. Due to the
variability of the raw materials, such a digital twin has to take into account not only the processing
steps but also the chemical, physical, or microbiological properties that change the food independently
from the processing. We propose a hybrid modeling approach, which integrates the traditional
approach of food process modeling and simulation of the bio-chemical and physical properties with a
data-driven approach based on the application of machine learning. This work presents a conceptual
framework for our digital twin concept based on explainable artificial intelligence and wearable
technology. We discuss the potential in four case studies and derive open research challenges.

Keywords: digital twin; food processing; Industry 4.0; artificial intelligence; machine learning;
self-aware computing systems

1. Introduction

The term Industry 4.0 refers to current technological changes in the environment
of industrial production enabled by advances in information technology. The focus of
Industry 4.0 is the smart factory, i.e., the connection of cyber-physical production systems
with Internet of Things (IoT) technology as well as intelligent data analysis. A core element
of Industry 4.0 is the digital twin: a virtual model of a product, the machines, or the
production process created with data collected by sensors that enables simulations or
real-time analyses of the production status [1]. As a digital twin integrates real-time data, it
provides a detailed model that can support decision making through simulation.

The use of digital twins seems beneficial in food processing for various reasons.
The Corona pandemic demonstrated the vulnerability of food supply chains and thus the
need for higher resilience. To ensure the supply of food, production processes must allow a
high flexibility and adaptivity which requires traceability. The survey “Die Ernährung 4.0-
Status Quo, Chancen und Herausforderungen” (Nutrition 4.0-Status Quo, Opportunities
and Challenges) conducted by the digital association Bitkom and the Federation of German
Food and Drink Industries showed that 70% of the more than 300 companies surveyed
in the food industry consider end-to-end traceability from the origin of the goods to the
customer to be an important scenario for the current decade [2]. Various types of sensors
exist to support this. However, the potential is far from being exploited. Furthermore,
product quality is influenced by different quality levels of input materials. Especially in
case of seasonal fluctuations of this raw material quality, an adjustment of parameters in
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the production process is essential. Introducing new products that are related to existing
ones is also a challenge in food processing. Introduction processes of new products could
be simplified by a digital twin of already existing products. The digital twin is able to learn
the correct process parameters for production, and is used as knowledge foundation within
a self-adaptive system [3]. All those application scenarios show the potential of digital
twins in the food supply chain and their huge potentials, e.g., in determining food quality,
traceability, or designing personalized foods.

In a recent literature review of the state-of-the-art of digital twins in agriculture and
the food industry, we identified the following issues [4]:

(1) The survey revealed that the application of digital twins mainly either targets the
production (agricultural production) or the food processing stage.

(2) Nearly all applications are used for monitoring and many for prediction. However,
only a small amount focuses on the integration in systems for autonomous control or
providing recommendations to humans.

(3) The main challenges of implementing digital twins are combining multidisciplinary
knowledge and providing enough data as a digital twin of food production has additional
specific requirements compared to digital twins of the production of material goods.

(4) Due to the variability of raw materials, the digit twins cannot be based only on the
processing steps, but must also take into account the chemical, physical or (micro)biological
properties of the food.

This vision paper aims to provide a concept that complements the typical, retrospective
analysis of machine and process data with short-term (detection of potential problems),
and medium-term data analysis approaches (planning and optimization) as well as product-
related analysis for constructing digital food twins. While Industry 4.0 approaches often
focus on the analysis of machine data, this paper describes a product-related data analysis
as well. Therefore, we propose the integration of existing models and simulations from
food science (white-box modeling approach) in combination with data-driven machine
learning-based data analysis (black-box modeling approach) to achieve a hybrid approach
for modeling digital food twins. We discuss the application potential of such a digital
food twin in four case studies: (i) proactive decision making of adaptation in the food
production, (ii) food reformulation and food product development, (iii) improving the
scale-up of prototypes to the production environment, and (iv) supporting the resilient food
supply with detection of critical events and tracking the current state of food at any time.
Further, we derive from those case studies research challenges in the area of digital food
twins. Solving those research challenges can be the foundation for an adaptive system that
is able to control the process, autonomously react to changes, and continuously improve its
performance through learning. Consequently, such a concept helps to better (i) understand
the behavior of a food production process, (ii) predict critical situations, and (iii) determine
a new plan.

The remainder of the paper is structured as follows. Next, Section 2 describes related
concepts and current approaches in literature. Afterwards, Section 3 presents our concept
for a digital food twin derived from a hybrid approach that combines data-driven machine
learning analysis with traditional chemo-physical modeling and simulation. Afterward,
Section 4 discusses the potential of the concept in different case studies. Then, Section 5
derives research challenges for the implementation of our concept out of the case studies.
Finally, Section 6 concludes this paper.

2. Background and Related Work

This section presents several approaches and concepts that we identified in the litera-
ture and which are relevant to the field of digital twins for the food processing industry.

Smart factory in the food industry: Current approaches in Industry 4.0 focus on
intelligent collection of data with technology from the IoT and its analysis with machine
learning algorithms [5]. This includes a variety of data sources, including raw material data,
machine data, or customer data (e.g., information about sales or complaints). In particular,
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production planning can be optimized with machine learning in this context [6], e.g., using
genetic algorithms for optimizing the order of production steps or integrating picture
recognition for quality control. Another use case is predictive maintenance of machines [7,8].
However, the focus is primarily on the view of the process and the machines. Internal
processes in the food industry are not included and the view of the product is limited
to identifying products with bar or QR codes [4]. Proactive adaptation improves system
performance as it forecasts adaptation concerns (e.g., through identification of patterns in
historical data) and reacts either by preparing an adaptation or adapting [9]. Real-time data
of production sites would help to realize proactive adaptation and dynamic adjustment
when a disruption takes place.

Modeling and simulation of food properties: Food science often proposes to apply
modeling or simulation to describe the food properties and characteristics. In the fol-
lowing, we present some examples to indicate the bandwidth of available applications.
Myhan, Białobrzewski, and Markowski [10] developed a mathematical model describing
the rheological properties of food materials. The authors of [11] reviewed mechanistic and
empirical approaches to explain and predict the effect of food matrix on chemical reactivity.
Van Boekel discussed the possibility to describe aspects of food, such as color, nutrient
content, and safety, in a quantitative way via mathematical models [12]. Further, numerical
simulations are applied in the food sector to simulate product or process characteristics.
Hartmann analyzed thermodynamic and fluid-dynamic effects of high-pressure treatment
by means of numerical simulation [13]. Abdul Ghani et al. simulated natural convection
heating within a can of liquid food during sterilization by solving the governing equa-
tions for continuity, momentum and energy conservation for an axisymmetric case [14].
The authors of [15] studied the heat transfer into an aerated food matrix using the finite
element method. The advantage of such modeling or simulation-based approaches is the
white-box approach, i.e., the relations of the different variables can be extracted from and
explained using the models. However, due to the high complexity of the modeled aspects,
these approaches always require abstractions from different aspects. This can limit their
applicability in productive settings. Further, those approaches require specific knowledge
of both aspects: the modeling/simulation technique as well as domain knowledge of the
food properties.

Digital twins in the food sector: Digital twins can be classified in six types—(i) imag-
inary that simulate reference objects, (ii) digital twins that monitor in real time the state
and behavior of an object, (iii) predictive ones that forecast future states and behavior of an
object, (iv) prescriptive ones, (v) autonomous digital twins (using artificial intelligence),
and (vi) recollection digital twins with historical data [16]. However, there are still few
concepts for digital twins specialized for food processing. Further, in a recent review [4],
we showed that agri-food digital twins are limited to specific aspects (e.g., animal moni-
toring, crop management, or hydroponics) rather than generically applicable throughout
the value chain. Approaches focus mainly on monitoring and some does support pre-
diction. However, only a small amount focuses on integrating autonomous control. The
survey further showed that implementing digital food twins requires multidisciplinary
knowledge, especially on how to model the bio-physical processes that change properties
of food due to the variability of raw materials. This is so far insufficiently integrated in
literature. Combining the strengths of numerical simulation with data driven methods
has been shown to predict sensory perception of complex food systems like yoghurt [17].
Therefore, hybrid modeling that complements existing food models and simulations with
a data-driven perspective seems to be beneficial—which this vision paper targets. Most
closely related to those demands, the smartFoodTechnologyOWL initiative investigates the
transferability of the digital twin concept to food processing [18]. The focus is on mapping
the process for better control of cyber-physical production systems. In order to make
quality control of food safer and more efficient, their goal is to continuously generate a
“virtual image” of the product during production. Other projects focus on the integration of
physical models to better predict the changes to the food through its processing. In [19],
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the authors describe the integration of physical, biochemical, and microbiological processes.
However, this type of digital twin often lacks the data-driven perspective of the processes
and [19] propose to include real-time coupling of sensor data with the digital twin. That
would help to foresee problems and proactively react to them. However, the focus is not
on adapting the production process based on the gained information nor on processing
the data for predicting critical events. Digital twins are used in production for monitoring
a production process [20]. Autonomous systems can respond to changes in state during
ongoing operation while digital twins can integrate a variety of data like environment data,
operational data, and process data [20,21]. Today food process modeling has mostly pure
design optimization and costs targets, but there is a great potential in reducing inter-product
variability, achieving higher transparency, and reducing use of resources [22].

Sensors and indicators: With the help of indicators, the presence or absence of a
substance, reactions between different substances, or the concentration of a particular
substance can be detected. Indicators show the analysis results by direct changes (usually
different color intensities) and are placed inside or outside the packaging. Different types
of indicators exist. Most common types are time-temperature indicators that show that
critical temperatures have been reached; freshness indicators that monitor the quality of
food products based on microbiologically motivated or chemical changes in the products;
and gas indicators that detect changes in the atmosphere of the package. In contrast to
immutable indicators that cannot be reused once they changed their state, sensors that are
either integrated into the food packaging or in the environment can detect temperature, hu-
midity, pressure on food or vibrations (accelerometers). Specific sensors such as gas sensors
or biosensors measure the concentration of certain gases such as carbon dioxide (CO2) or
hydro-sulfuric acid, which allow conclusions to be drawn about perishability. CO2 concen-
tration can be measured using non-dispersive infrared (NDIR) sensors or chemical sensors;
infrared sensors as well as electrochemical, ultrasonic, and laser technologies are used to
detect the oxygen concentration. Another type of sensors are biosensors based on receivers
made of biological materials such as enzymes, antigens, hormones, or nucleic acids. These
are used, for example, to identify pathogens such as salmonella, E.coli, or listeria. The
overview in [23] describes the state-of-the-art in sensor and indicator types. Especially
sensors facilitate real-time data collection which supports building a digital twin.

Contribution: In the case of the food supply chain, a detailed model of the supply
chain, which integrates real-time data to predict supply chain dynamics, can be a promising
concept to respond to unexpected events in the whole supply chain including field, factory,
retailer, and consumer. The goal of this vision paper is to describe how to create a digital
food twin that can be used to track the current state of production at any time, but also
trace the food through the food supply chain. While Industry 4.0 approaches often focus
on the analysis of machine data, this project aims at also including a product-related data
analysis (e.g., the effects of pressure exerted by machines). The main contribution is to
provide a framework which describes how to include a data-driven perspective into the
traditional approach of modeling food properties within a digital food twin. The sensor
measurements are complemented by the result of machine learning methods, continuous
simulation, and critical event prediction based on forecasting.

3. System Model of a Hybrid Digital Food Twin

This paper presents and discusses a concept that complements the typical modeling
or simulation to analyze the processing of food with a data-driven perspective to fill the
gap resulting from the abstraction of the models to create a hybrid digital food twin for
achieving a real-time, predictive decision making of adaptation in the food supply chain.
Consequently, such a concept helps to better (i) understand the behavior of a supply chain,
(ii) predict critical situations, and (iii) determine how to adapt he processes.
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3.1. Data Sources

With the help of machine learning and artificial intelligence, the digital twin is gen-
erated from production data and additional data sources (e.g., scientific models, process
data, or raw material data) to ensure the traceability of the production and the food status,
but also to enable the simulation of the variability of the food in the process operation.

Figure 1 shows our concept of the digital twin. In the figure and the following, we
focus on the example of a dairy product (e.g., cheese). The digital twin gets its data from the
production site (i.e., sensor, machine, and processing data, e.g., temperature, pressure or
pH value) and also integrates raw material data, complaints, and knowledge from experts
(e.g., about the handling of production issues). Using different simulation methods based
on chemo-physical models and numerical simulations from food science, the digital twin
provides information about the actual food processing and supports real-time feedback to
the food process operation. Additionally, those simulations based on scientific models help
to predict how the product will be changed through the processes as well as the conditions.
This information can be used to generate forecasts on how the process steps might influence
the quality of the product. Accordingly, the digital twin is suitable for retrospective but
also predictive analytics of the process and the quality of the product.

Figure 1. The digital food twin which integrates the data from various sources.

We want to illustrate the potential on the example of yogurt fermentation. Applying a
traditional digital twin concept as known from Industry 4.0 would be not feasible. Those
concepts use process data (mainly from machines) to control and describe the production
processes. Without actions from the machines, the product’s state will not change. However,
for yogurt fermentation, the process is mainly based on resting after inoculation with starter
cultures. Hence, the process data cannot describe sufficiently the process as the process
happens within the product. When we complement the spare process information with
known models from science to describe the behavior of the bacteria, we get a more accurate
picture. But also the model itself would not be sufficient after inoculation with starter cul-
tures, as the model abstracts and each batch of starter culture also has it variations, similar
to the milk which properties differs over the year (due to different feeding). Accordingly,
a mixture of both is important: The model to understand how the transformation from
milk to yogurt works as well as the available data to adjust the model parameters. This is
what we want to target with our digital food twin concept.

3.2. Data Interpretation

The common approach for extracting information from large datasets would be to
rely on deep learning procedures. Those procedure provide a high degree of autonomy
in the learning process and are very powerful. The inner workings are thus hidden from
the user; the user receives a black-box. However, the resulting models are highly complex
and difficult to interpret. This opacity means that intelligent systems cannot be sufficiently
validated before they are used productively. This makes it infeasible to combine the
resulting prediction with the existing models from food science. Hence, we rely on machine
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learning procedures, especially from the field of explainable artificial intelligence (XAI),
for constructing the digital twin.

XAI describes the systematic explanation and validation of machine learning with the
involvement of the users. XAI deals with methods and algorithms that provide humans
with explanations as to why a decision was made. Thus, the user is integrated into the
machine learning process and can actively contribute to the quality of the system through
his/her cognitive abilities, such as those of generalization. XAI bridges the gap between
the enormous potential of artificial intelligence and their inevitable risks w.r.t. the missing
explainability of the results.

Such XAI approaches help to transform the sensor data into a digital twin model,
which can be used for simulation. Further, in contrast to approaches based on artificial
neural networks (e.g., deep learning), those XAI models are explainable and humans are
able to understand and adjust them. This simplifies the integration of expert knowledge in
the learning process. Two approaches for XAI are feasible:

(1) Some machine learning techniques are inherently explainable, e.g., decision trees
or random forest. However, those might come to limitations for large data sets and do not
support automatic feature extraction as it is the case for deep learning methods.

(2) For non-explainable approaches, such as deep neural networks, the idea is to have
a second component called XAI component, which tries to use models to explain the results
(see Figure 2).

Requests Prediction

XAI

ModelLearningTraining 
Data

Prediction

Asks and gets
explanation

Systematic
analysis

Insights can be used
to improve the

training

Figure 2. Process of machine learning based prediction with an additional XAI component to explain
the results to the users.

We target the second approach as the XAI component can be based on the mentioned
models and simulations from food science. Further, the second approach relies on deep
learning procedures which have more performance than other machine learning techniques.
The first category is preferable if techniques such as random forest can be used as those
techniques return explainable models. In general, the decision depends on the use case,
the available data set (only large datasets are usable with deep learning techniques), the per-
formance of the techniques with explainable models (such as random forest) from category
1, and if it is feasible to implement the XAI component.

3.3. Model Selection

A difficulty lies in the generation of a machine learning workflow, that supports
automatically the data pre-processing, choice of a machine learning technique, and learning
of machine learning models. Especially the choice of the machine learning technique is
important, as the data pattern influence the performance of the technique for learning.
Based on the “No-Free-Lunch Theorem” [24] from 1997, stating that there is no optimization
algorithm best suited for all scenarios, an analogy can be drawn to the domain of machine
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learning: there is no machine learning method that performs best for all types of data.
Recommendation systems can help to choose the best fitting technique and configure its
parameters, i.e., hyper-parameter tuning, based on the characteristics of the data and the
data pattern. We plan to adapt and integrate previous work on time series forecasting
recommendation systems [9].

One important step for the data-driven analysis using machine learning is the pre-
processing of the data, i.e., the generation of features for learning. Usually, this activity
requires manual effort and domain expertise. Deep learning algorithms perform this
feature extraction automatically, however, have the disadvantage of reduced explainabil-
ity. Log-based prediction approaches support the structured, automatic extraction of
features from log data. Such approaches use historical event-log data to train machine
learning algorithms [25]. With log-based prediction, the required steps can be automatized,
but are clearly defined and, hence, support the explainability of the data pre-processing.
Gutschi et al. presented an approach for predictive maintenance which integrates log-based
prediction [25]. Lopez et al. use historical log data emitted by production machines from
several industrial factories to predict sufficiently early the occurrence of a critical malfunc-
tion in machines [26]. We plan to integrate a similar log-based prediction for automatizing
the extraction of relevant data patterns and features from historical data, especially as
such an approach might enhance transferability of the digital twin between different food
categories.

3.4. Integrating Simulation

While Industry 4.0 approaches for digital twins often focus on the analysis of machine
data, our concept also integrates the simulation of the internal product states. Still, we
so far focus on integration of process data, e.g., collected with in-line sensors or sensors
integrated into processing machines. This could be extended by an approach for data
collection using replicas of food products created with a 3D printer. Those replicas can be
equipped with sensors to allow data collection from the point of the products for drawing
conclusions about the processing steps and their influence on the products. Hence, using
IoT technology, especially smart miniaturized sensors, and the use of 3D printing, there is
an opportunity for collecting intra-process data from the products’ point of view. There
are two examples for such an approach. The nPotato [27] is an artificial potato equipped
with sensors that is laid out in the field while harvesting. The data is analyzed to detect
whether the harvester is set correctly. The artificial mango [28] enables an improved
thermal profiling during the complete transport in the supply chain. The combination of
the proposed food modeling/simulation with data analytics of process data using machine
learning (as external process perspective) as well as the integration of product data from
those artificial food replicas (as internal product perspective) would support a very precise
view on the food items and the process.

4. Case Study Analysis

The previous section described our approach for a hybrid digital twin which combines
traditional modeling/simulation of food properties (white-box approach) with machine
learning enabled analysis for integration specific information (black-box approach). Such
an approach can rely on the power of data analysis for filling gaps due to model abstraction
for optimizing the parametrization of the models.

This section presents four case studies which show the potential of the digital twin
concept. First, Section 4.1 describes the application of the digital twin to support proactive,
adaptive food processing. Second, Section 4.2 targets the product development and explains
the use of the digital twin for food reformulation. Third, Section 4.3 combines the process
and product perspectives and discusses the usefulness of the digital twin to support the
scale-up from demonstration to productive systems and also for shelf-life prediction. Last,
Section 4.4 focuses the food supply chain and presents how to improve the traceability of
food with the digital twin.
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4.1. Proactive, Adaptive Food Processing Systems

Food production processes are particularly vulnerable, as the quality of raw materials
varies depending on the season and in addition internal biological and chemical properties
has to be taken into account. This information has to be included in the food process
operation to secure consistently a high food quality and reduce food waste during produc-
tion. Up to now, there is no food process operation which includes data provided by a
digital twin as real-time input within an adaptive system to control the food processing.
The concept of digital twins could improve this reasoning on how to adapt the process
(e.g., machine parameters) based on the quality or properties of raw material.

Using the digital twin as base for reasoning, processes can be adapted based on
the information provided by the digital twin. Self-aware computing (SeAC) systems are
a subset of artificial intelligence.Those SeAC systems have two main properties which
describe their functionality [29]. First, those systems learn models which capture knowledge
about (i) the systems themselves (i.e., their hardware and software, including possible
adaptation actions and runtime behavior) and (ii) their environment such as users and
other systems but also environmental parameters that might be relevant. In the case of
food production this can be temperature, humidity, conditions of the transportation, raw
material quality etc. Second, SeAC systems use the information of the models to reason
(i.e., to predict, analyze, consider, or plan required adaptations), which enables them to act
based on their knowledge and reasoning results. For example, this could be the analysis
that some process steps do not perform as intended and, hence, the system changes various
parameters. As those systems support the adaptivity of computing system, they seem to be
well suited as base for adaptive food processing systems. For controlling the food process
operation, the SeAC systems implemnet the LRA-M loop (see Figure 3). In the following,
we describe how the loop can be extended to fit the specifics of food systems.

Figure 3. Conceptual framework on how to include data provided by a digital food twin into a
self-aware learning and reasoning loop (based on [29]).

The LRA-M loop uses ongoing learning about the environment in combination with
reasoning for the next actions of the system. For the ongoing learning process, the empirical
observations are used. The learning process analyzes the observations and the gained
knowledge is stored using models. The knowledge from the models and the given goals
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are used by the reasoning process to determine the next actions that the system should
take to achieve these goals. The generated models can be complemented by other models,
which, e.g., describe biological, physical, or chemical relations that influence the food. These
actions can affect the behavior of the system and have an impact on the environment as well.
The LRA-M loop is adapted as we want to include knowledge provided by the previous
introduced digital twin into the framework. Thereby, the knowledge provided by the
digital twin is not only a simple knowledge database but processed data which is generated
using critical event prediction or different machine learning approaches. The main goal is
that the SeAC system adjusts the parameters autonomously or provides recommendations
to the user on how to change machine configurations.

4.2. Food Reformulation and Food Product Development

Two of the major challenges of modern societies are nutrition-related diseases and
climate change. Both topics are creating forces to change the composition of our food.
On the one hand, fat, salt, or sugar content needs to be reduced to lower the health risks
and costs associated with cardiovascular diseases, obesity, and diabetes. On the other hand,
protein sources are moving from animal to plant origin, driven by concerns of animal
welfare as well as environmental effects of raw material production. However, nutritional
habits are only changed long-term if the alternative product is matching the original’s
sensory properties. This is why understanding the effect of compositional changes on
aroma perception is highly relevant to tackle the challenges of today’s world.

Aroma perception is a complex phenomenon, as it depends on physiological pa-
rameters showing large inter-individual differences (e.g., saliva, breathing) and it shows
cross-modalities to our other sensory inputs, i.e., texture and taste [30,31]. However,
from the food perspective, aroma release mainly depends on the interactions between
the aroma compound and the ingredients of the food (fat, carbohydrates, proteins, etc.).
The strength of these interactions can be quantified by the partition coefficient Kmg, defined
as the quotient between the flavor concentration in the food and the concentration in the
headspace above the food.

Due to the intensive research in the field, a large amount of data for different aroma
substances in various food matrices is available. Hence, it would be possible to combine the
models describing the known physical relationships governing aroma release with machine
learning to generate a digital twin for predicting the Kmg value of aroma compounds in
foods of different composition. With the data-driven approach, it would be feasible to
generate the digital twin for a specific food category combining machine learning and
scientific models for a specific food category, e.g., dairy products. This product category
shows many dimensions of variation besides composition (e.g., protein conformation,
pH). Afterwards, transfer of the model to products based on plants like soy or legumes is
possible, as the data-driven component can adjust the digital twin to the specifics of the
other food product.

4.3. Scale-Up and Shelf-Life Prediction

The digital twin can help to decrease the time to market for new products and support
the scale-up of the production of new products. It is possible to use the digital twin of a
product with similar properties or a similar food matrix, adjust this digital twin, and use it
as base to learn the required adjustments in the production process (e.g., new configurations
of machines) for fastening the scale-up of new products. Similarly, the digital twin can also
support deriving necessary changes of the process parameters, i.e., machine configuration,
as a result to the variability of the ingredients’ quality or composition.

Additionally, it is feasible to use the digital twin’s information for determining the
potential shelf-life of a new product based on the observations for similar products and
the adjustments of a corresponding existing digital twin for the new product. Also the
digital twin models the chemo-physical and microbiological properties of the food. Those
relations can be used to simulate the food’s perishability. Further, it is also feasible to
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integrate a digital twin of the packaging and, by combining this with the digital twin of the
food, to determine the interactions between the packaging and the perishability of the food.
For example, see the Fraunhofer project on simulation of shelf life [32].

4.4. Resilient Food Supply and Traceability

The food supply chain integrates all process steps and supports a continuous tracking
of the food throughout the production process. The digital twin concept could also support
various functionalities of the food supply chain. Especially the possibility to simulate
various aspects and, through that, predict critical situation in advance (e.g., cold chain
violations), help to proactively react, adapt the process, and improve the resilience. This
work presents the underlying concept that shows how processed data (e.g., raw material,
machine data, etc.) is used as input for the manufacturing site to adapt production pro-
cesses based on predicting critical situations. Especially the data-driven machine learning
component helps to provide a real-time analysis of the food items as it integrates the sensor
values. Smart packaging concepts [23] that add sensor technology into packaging can
support the data collection.

The digital twin helps not only to model the information of the current condition of
the food, but also to improve its traceability. This can be complemented with Blockchain
technology [33]. Blockchains offer a distributed data management solution which might
be beneficial as those reduce data duplication and increase robustness of the data access.
Several authors [34,35] propose to integrate the Blockchain for traceability purposes, as the
complete documentation of the origin of ingredients and food is highly important and
often a legal obligation.

5. Discussion

One of the major challenges of implementing digital twins is the lack of a general
method, which describes how to gather the information from the physical to the virtual
object [20,22,36]. Koulouris et al. state that the specific characteristics of the food sector
and high-value product industries, such as specialized equipment, component complexity,
and high-quality standards, are responsible for the delay in the adoption of real-time process
simulation for design and modeling [37]. Thus, the individual projects for implementing
a digital twin lead to higher investment costs due to the diversity of approaches and,
therefore, are particularly challenging in smaller companies and poorer countries [20,22,38].
In the following, we discuss particular research challenges for our vision of hybrid digital
twins that we derived from analyzing the described case studies from the previous section.

Complexity of food: The complexity and variability of raw materials and their prop-
erties used to create food products, the rigidity in the process, and the limited shelf-life
not only of food raw materials but also the products made of it are limiting the applica-
tion [22,37]. Further, plants, processes, and knowledge are continuously changing environ-
ments, forcing the related digital twins to improve permanently [39]. The complexity of the
food items also require the support for customizing the digital twins.

Absence of physicochemical models: The absence of good physicochemical data is
another major impediment to the use of modeling and simulation tools [37]. For instance,
food processing faces a wide range of foods with insufficiently described properties, hard
to calculate or even to predict, such as molecular weight, pH, or water activity, and not so
well understood thermodynamics. Furthermore, the kinetics of biological and chemical
processes need to be understood and made calculable as physics-based models [22]. This
effect is intensified by production mixes, technology variability, and the unpredictability
of the physical solution [40], resulting in complex integration of different modeling meth-
ods [22]. However, process models can already be incorporated to estimate the energy and
material requirements and expected process yield during the food processing [37].

Explainability of the data analysis: We rely on machine learning algorithms for the
analysis of the data. As mentioned above, we have here the tradeoff between performance
of the learning and the explainability. We plan the integration of an XAI component based
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on the physicochemical models. However, the field of model-based XAI is a rather new
field [41]. Hence, significant contributions in this field are necessary for the combination of
the models and data analysis.

Data fusion: The combination of the proposed food modeling/simulation with data
analytics of process data using machine learning (as external process perspective) as well
as the integration of product data from those artificial food replicas (as internal product
perspective) would support a very precise view on the food items and the process. This
often results in many challenges as conflicting data, corrupted data, or incompatible data.

Complexity of data integration: Depending on the complex integration of different
methods (modeling, simulation, machine learning) in the digital twin application, the ma-
turity of prescriptive analytic techniques might become a risk due to unreliability, thus a
barrier for implementing a digital twin [42]. Here, data security and validation need to
be considered [43]. Especially the validation of the captured data is an important aspect,
as sensor values are always uncertain to some degree.

Validation of Data and Digital Twin Models: One critical issue will be the validation
of the used data. Following the famous “garbage in, garbage out” principle for machine
learning, which postulates that the quality of learned models will be low if the data quality
is low, the validation of data is an important steps. Data quality might be influenced
especially by sensor faults or missing data, such as parameter changes through manual
operation. Hence, the validation of data is an important aspect to guarantee the validity
of the models. We plan to integrate automatic feature engineering, such as known from
AutoML [44], to address those issues. Further, the quality of the digital twin models is an
important aspect. On the one hand, this requires an approach to estimate the quality of the
digital twin models. On the other hand, even if the quality is satisfiable at a specific point of
time, this quality might be reduced over time, for example, in case of context drift, i.e., the
pattern of the data changes so that the learned models does not capture those patterns
anymore. Accordingly, besides a metric to estimate the quality of the digital twin models,
also a process for continuous learning on-the-fly is important to achieve a high validity for
the digital twin models.

Missing technological infrastructure: Another challenge is that only by advancing
sensor, communication, and data processing technologies, real-time interaction between
actual and virtual twins can be achieved [40]. The systems themselves have to enable the
implementation of digital twins, i.e., their properties must be known or observable, as well
as they have to provide high-quality data [45].

Missing knowledge of employees: The required expertise of knowledge becomes a
real challenge for project teams [38]. In order to address the requirements resulting from
the key elements, multidisciplinary knowledge is required [46]. This includes expert, plant,
machine, and product knowledge [43]. Additionally, the ICT infrastructure, as well as their
establishment and organization, play important roles [42,43].

Integration into the Supply Chain: One important goal of the digital twin approach is
the support of the various stakeholders of and activities in the supply chain. The challenge
hereby is many the variety of the different used systems and how those can be integrated
for the digital approach. The standardization of ERP systems such as SAP can support this.
However, the presence of such systems in the food industry is smaller than in comparable
industries. One reason is the specific needs of the industry. Hence, specific types of such
ERP systems emerged recently. Addressing this challenge of a holistic view on the supply
chain helps to apply the digital twin concept to simulate and evaluate different steps in
the supply chain and to optimize them. This can also support the resilience of the whole
supply chain.

6. Conclusions

In this paper, we discussed the idea of using biophysical digital twins—composed of
data from the process (collected by sensors) and raw material of the products combined
with scientific models from food science—to capture and simulate the state of a food
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product and process during food processing. Such a hybrid digital twin would have several
benefits, especially it can be the base for reasoning on process adjustment and adaptations,
but also facilitates the product development. This paper described the idea of integrating
XAI procedures to improve the construction of the digital twins and integrating expert
knowledge—transferring the black-box of machine learning to a white-box through the
combination with scientific model/simulations. Further, the paper describes how to apply
the digital twin concept in several case studies: (i) SeAC systems can support adaptive food
processing, (ii) product development and food reformulation, (iii) support the scale-up and
shelf-life prediction, and (iv) traceability in the food supply chain.

In our research group, we made the first steps towards our vision. Obviously, there
are several challenges we still have to tackle. This includes a general applicable model for
describing the properties of the digital twin which can be applied to different categories
of food products. Further, we currently build the digital twins manually. We are working
on solutions that automate the construction of digital twins as well as the analysis of the
modeled food similar to solutions from the area of machine learning, e.g., AutoML [44] or
based on our previous works [8,9]. Additionally, we already have several previous works
for systems that can adapt the process and support adaptability [3,8,9,47]. We are currently
working on integrating and adjusting them for food processing.

Author Contributions: Conceptualization, C.K. and T.N.; methodology, C.K. and T.N.; formal
analysis, C.K. and T.N.; writing—original draft preparation, T.N.; writing—review and editing,
C.K., C.B. and T.N.; visualization, T.N. and C.K.; supervision, C.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ICT information and communication technology
IoT internet of things
LRA-M learn-reason-action-model
SeAC self-aware computing
XAI explainable artificial intelligence

References
1. Stark, R.; Damerau, T. Digital Twin. In CIRP Encyclopedia of Production Engineering; Chatti, S., Tolio, T., Eds.; Springer:

Berlin/Heidelberg, Germany, 2019; pp. 1–8. [CrossRef]
2. Rohleder, B.; Minhoff, C. Die Ernährung 4.0-Status Quo, Chancen und Herausforderungen. 2019. Available online:

https://www.bitkom.org/sites/default/files/2019-03/Bitkom-Charts%20190326%20Digitalisierung%20der%20Ern%C3%A4
hrungsindustrie.pdf (accessed on 25 July 2022).

3. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Schiele, G.; Becker, C. A Survey on Engineering Approaches for Self-adaptive Systems.
Pervasive Mob. Comput. 2015, 17, 184–206. [CrossRef]

4. Henrichs, E.; Noack, T.; Pinzon Piedrahita, A.M.; Salem, M.A.; Stolz, J.; Krupitzer, C. Can a Byte Improve Our Bite? An Analysis
of Digital Twins in the Food Industry. Sensors 2022, 22, 115. [CrossRef]

5. Cadavid, J.P.U.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A
state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 1–28. [CrossRef]

6. Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; De Felice, F. Artificial intelligence and machine learning applications in smart
production: Progress, trends, and directions. Sustainability 2020, 12, 492. [CrossRef]

7. Krupitzer, C.; Wagenhals, T.; Züfle, M.; Lesch, V.; Schäfer, D.; Mozaffarin, A.; Edinger, J.; Becker, C.; Kounev, S. A survey on
predictive maintenance for industry 4.0. arXiv 2020, arXiv:2002.08224.

8. Züfle, M.; Moog, F.; Lesch, V.; Krupitzer, C.; Kounev, S. A machine learning-based workflow for automatic detection of anomalies
in machine tools. ISA Trans. 2022, 125, 445–458. [CrossRef]

http://doi.org/10.1007/978-3-642-35950-7_16870-1
https://www.bitkom.org/sites/default/files/2019-03/Bitkom-Charts%20190326%20Digitalisierung%20der%20Ern%C3%A4hrungsindustrie.pdf
https://www.bitkom.org/sites/default/files/2019-03/Bitkom-Charts%20190326%20Digitalisierung%20der%20Ern%C3%A4hrungsindustrie.pdf
http://dx.doi.org/10.1016/j.pmcj.2014.09.009
http://dx.doi.org/10.3390/s22010115
http://dx.doi.org/10.1007/s10845-019-01531-7
http://dx.doi.org/10.3390/su12020492
http://dx.doi.org/10.1016/j.isatra.2021.07.010


Processes 2022, 10, 1781 13 of 14

9. Zuefle, M.; Bauer, A.; Lesch, V.; Krupitzer, C.; Herbst, N.; Kounev, S.; Curtef, V. Autonomic Forecasting Method Selection:
Examination and Ways Ahead. In Proceedings of the 2019 IEEE International Conference on Autonomic Computing (ICAC),
Umea, Sweden, 16–20 June 2019; pp. 167–176. [CrossRef]

10. Myhan, R.; Białobrzewski, I.; Markowski, M. An approach to modeling the rheological properties of food materials. J. Food Eng.
2012, 111, 351–359. [CrossRef]

11. Capuano, E.; Oliviero, T.; van Boekel, M.A. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.
Crit. Rev. Food Sci. Nutr. 2018, 58, 2814–2828. [CrossRef]

12. Van Boekel, M.A. Kinetic Modeling of Food Quality: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 144–158. [CrossRef]
13. Hartmann, C. Numerical simulation of thermodynamic and fluid-dynamic processes during the high-pressure treatment of fluid

food systems. Innov. Food Sci. Emerg. Technol. 2002, 3, 11–18. [CrossRef]
14. Abdul Ghani, A.; Farid, M.; Chen, X.; Richards, P. Numerical simulation of natural convection heating of canned food by

computational fluid dynamics. J. Food Eng. 1999, 41, 55–64. [CrossRef]
15. Borsum, C.; del, K.; Stefan, T.; Schmidt, C.; Hinrichs, J. Design of in vitro model to study oral aroma release: Experimental study

and numeric simulation of heat transfer in a foamed dairy matrix. J. Food Eng. 2020, 278, 109940. [CrossRef]
16. Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [CrossRef]
17. Rauh, C.; Singh, J.; Nagel, M.; Delgado, A. Objective analysis and prediction of texture perception of yoghurt by hybrid

neuro-numerical methods. Int. Dairy J. 2012, 26, 2–14. [CrossRef]
18. Technische Hochschule Ostwestfalen-Lippe. Smartfoodtechnology OWL—Projects. Available online: https://www.sft-owl.de/

en/projects/ (accessed on 25 July 2022).
19. Defraeye, T.; Shrivastava, C.; Berry, T.; Verboven, P.; Onwude, D.; Schudel, S.; Bühlmann, A.; Cronje, P.; Rossi, R.M. Digital twins

are coming: Will we need them in supply chains of fresh horticultural produce? Trends Food Sci. Technol. 2021, 119, 245–258.
[CrossRef]

20. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Informatics 2019, 15, 2405–2415.
[CrossRef]

21. Rosen, R.; Von Wichert, G.; Lo, G.; Bettenhausen, K.D. About the importance of autonomy and digital twins for the future of
manufacturing. IFAC-PapersOnLine 2015, 48, 567–572. [CrossRef]

22. Verboven, P.; Defraeye, T.; Datta, A.K.; Nicolai, B. Digital twins of food process operations: The next step for food process models?
Curr. Opin. Food Sci. 2020, 35, 79–87. [CrossRef]

23. Müller, P.; Schmid, M. Intelligent Packaging in the Food Sector: A Brief Overview. Foods 2019, 8, 16.
[CrossRef]

24. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
25. Gutschi, C.; Furian, N.; Suschnigg, J.; Neubacher, D.; Voessner, S. Log-based predictive maintenance in discrete parts manufactur-

ing. Procedia CIRP 2019, 79, 528–533. [CrossRef]
26. Lopez, M.; Beurton-Aimar, M.; Diallo, G.; Maabout, S. A simple yet effective approach for log based critical errors prediction.

Comput. Ind. 2022, 137, 103605. [CrossRef]
27. Maaß, W.; Pier, M.; Moser, B. Smart Services in der Landwirtschaft. In Service Engineering: Von Dienstleistungen zu digitalen Service-

Systemen; Meyer, K., Klingner, S., Zinke, C., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; pp. 167–181.
[CrossRef]

28. Defraeye, T.; Wu, W.; Prawiranto, K.; Fortunato, G.; Kemp, S.; Hartmann, S.; Cronje, P.; Verboven, P.; Nicolai, B. Artificial fruit for
monitoring the thermal history of horticultural produce in the cold chain. J. Food Eng. 2017, 215, 51–60. [CrossRef]

29. Kounev, S.; Kephart, J.; Milenkoski, A.; Zhu, X. Self-Aware Computing Systems; Springer International Publishing: Cham,
Switzerland, 2017.

30. Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int.
2002, 18, 49–70. [CrossRef]

31. Chen, J. Food oral processing—A review. Food Hydrocoll. 2009, 23, 1–25. [CrossRef]
32. Fraunhofer IVV. Simulation of Shelf Life–Shelf Life Prediction and the Sizing of Packaging. Available online: https://www.ivv.

fraunhofer.de/en/packaging/modeling-shelf-life.html (accessed on 24 July 2022).
33. Krupitzer, C.; Stein, A. Food Informatics—Review of the Current State-of-the-Art, Revised Definition, and Classification into the

Research Landscape. Foods 2021, 10, 2889. [CrossRef]
34. Tian, F. A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In Proceedings

of the ICSSSM 2017—International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017;
pp. 1–6. [CrossRef]

35. Mondal, S.; Wijewardena, K.P.; Karuppuswami, S.; Kriti, N.; Kumar, D.; Chahal, P. Blockchain Inspired RFID-Based Information
Architecture for Food Supply Chain. IEEE IoTJ 2019, 6, 5803–5813. [CrossRef]

36. Martínez, G.S.; Sierla, S.; Karhela, T.; Vyatkin, V. Automatic Generation of a Simulation-Based Digital Twin of an Industrial
Process Plant. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington,
DC, USA, 21–23 October 2018; pp. 3084–3089. [CrossRef]

37. Koulouris, A.; Misailidis, N.; Petrides, D. Applications of process and digital twin models for production simulation and
scheduling in the manufacturing of food ingredients and products. Food Bioprod. Process. 2021, 126, 317–333. [CrossRef]

http://dx.doi.org/10.1109/ICAC.2019.00028
http://dx.doi.org/10.1016/j.jfoodeng.2012.02.011
http://dx.doi.org/10.1080/10408398.2017.1342595
http://dx.doi.org/10.1111/j.1541-4337.2007.00036.x
http://dx.doi.org/10.1016/S1466-8564(01)00060-1
http://dx.doi.org/10.1016/S0260-8774(99)00073-4
http://dx.doi.org/10.1016/j.jfoodeng.2020.109940
http://dx.doi.org/10.1016/j.agsy.2020.103046
http://dx.doi.org/10.1016/j.idairyj.2012.03.006
https://www.sft-owl.de/en/projects/
https://www.sft-owl.de/en/projects/
http://dx.doi.org/10.1016/j.tifs.2021.01.025
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1016/j.ifacol.2015.06.141
http://dx.doi.org/10.1016/j.cofs.2020.03.002
http://dx.doi.org/10.3390/foods8010016
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.procir.2019.02.098
http://dx.doi.org/10.1016/j.compind.2021.103605
http://dx.doi.org/10.1007/978-3-658-20905-6_11
http://dx.doi.org/10.1016/j.jfoodeng.2017.07.012
http://dx.doi.org/10.1081/FRI-120003417
http://dx.doi.org/10.1016/j.foodhyd.2007.11.013
https://www.ivv.fraunhofer.de/en/packaging/modeling-shelf-life.html
https://www.ivv.fraunhofer.de/en/packaging/modeling-shelf-life.html
http://dx.doi.org/10.3390/foods10112889
http://dx.doi.org/10.1109/ICSSSM.2017.7996119
http://dx.doi.org/10.1109/JIOT.2019.2907658
http://dx.doi.org/10.1109/IECON.2018.8591464
http://dx.doi.org/10.1016/j.fbp.2021.01.016


Processes 2022, 10, 1781 14 of 14

38. Dittmann, S.; Zhang, P.; Glodde, A.; Dietrich, F. Towards a scalable implementation of digital twins—A generic method to acquire
shopfloor data. Procedia CIRP 2021, 96, 157–162. [CrossRef]

39. Werner, R.; Beugholt, A.; Takacs, R.; Geier, D.; Becker, T.; Sollacher, R.; Mauermann, M.; Weißenberg, N.; Roest, M.; Istaitih, J.
Standardized digitalization of an existing pudding production: Integration of a digital twin management system. Int. Dairy Mag.
2020, 5, 22–25.

40. Barni, A.; Fontana, A.; Menato, S.; Sorlini, M.; Canetta, L. Exploiting the Digital Twin in the Assessment and Optimization of
Sustainability Performances. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal,
25–27 September 2018; pp. 706–713. [CrossRef]
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