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Abstract

Context: Smart and adaptive Systems, such as self-adaptive and self-organising (SASO) systems, typically consist of a large set
of highly autonomous and heterogeneous subsystems that are able to adapt their behaviour to the requirements of ever-changing,
dynamic environments. Their successful operation is based on appropriate modelling of the internal and external conditions.

Objective: The control problem for establishing a near-to-optimal coordinated behaviour of systems with multiple, potentially
conflicting objectives is either approached in a distributed (i.e., fully autonomous by the autonomous subsystems) or in a centralised
way (i.e. one instance controlling the optimisation and planning process). In the distributed approach, selfish behaviour and being
limited to local knowledge may lead to sub-optimal system behaviour, while the centralised approach ignores the autonomy and the
coordination efforts of parts of the system.

Method: In this article, we present a concept for a hybrid (i.e., integrating a central optimisation with a distributed decision-
making process) system management that combines local reinforcement learning and self-awareness mechanisms of fully au-
tonomous subsystems with external system-wide planning and optimisation of adaptation freedom that steers the behaviour dynam-
ically by issuing plans and guidelines augmented with incentivisation schemes.

Results: This work addresses the inherent uncertainty of the dynamic system behaviour, the local autonomous and context-aware
learning of subsystems, and proactive control based on adaptiveness. We provide the ’swarm-fleet infrastructure’—a self-organised
taxi service established by autonomous, privately-owned cars—as a testbed for structured comparison of systems.

Conclusion: The ’swarm-fleet infrastructure’ supports the advantages of a proactive hybrid self-adaptive and self-organising
system operation. Further, we provide a system model to combine the system-wide optimisation while ensuring local decision-
making through reinforcement learning for individualised configurations.

Keywords: Self-Awareness, self-reflection, hybrid optimisation, autonomous learning, proactive behaviour, swarm fleet
infrastructure, autonomous taxi, organic computing

1. Introduction

Imagine your autonomous car brings you to your job, picks
you up at the end of your working day, and uses the time in-
between to take care of maintenance or earns money. Given the
current developments, autonomous driving seems to become a
reality in a few years. Augmenting this behaviour with au-
tonomous decisions about prioritising and fulfilment of tasks
(i.e., serving as a taxi by transporting people or goods from
one location to another), and maintaining the operational status
themselves (i.e., control energy load and service status) is just
the next step in this process. Although this may seem to be a
utopian vision from our current point-of-view, the way to make
it real is already paved, as shown by examples such as Elon
Musk’s vision for his company TESLA [1], Uber’s activities1
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regarding self-driving robotaxis or the recent start of Waymo’s
robotaxi service in San Francisco2. Whereas current research
and development approaches mainly target the technical feasi-
bility of the driving itself, in such a setting, novel technolog-
ical concepts are required that allow for improved efficiency
of resource utilisation, decreased environmental impact of mo-
bility, and improved user-oriented behaviour—while respecting
the autonomy of the taxis and yet searching for a system-wide
optimisation. This is in-line with the overall need to support the
“sustainable development goals” postulated by the United Na-
tions with concepts from the domain of artificial intelligence /

machine learning [2].
We use this scenario to highlight a fundamental conflict in

resource planning for smart and adaptive systems to which the
class of self-adaptive and self-organising (SASO) systems3 be-

2https://techcrunch.com/2021/08/24/

waymo-launches-robotaxi-service-in-san-francisco/
3We refer to SASO systems as an umbrella term combining the efforts in

fields such as Organic Computing [3], Autonomic Computing [4], Self-Aware
Computing [5], Interwoven Systems [6], or Autonomous Learning [7]
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longs: Those systems support adjustments of their behaviour
to changes in the environment [8]; however, a system-wide (or
global) optimisation may result in the best possible trade-off

between local goals, fairness, and self-awareness (as defined
in [9, 5]) of environmental conditions but the autonomous par-
ticipants may ignore the plan and consequently render the op-
timisation process infeasible. According to Kounev et al. a
computing system is self-aware if it has or can acquire the
following three characteristics: self-reflective (being aware of
its architecture, execution environment, and operational goals),
self-predictive (predict the effect of dynamic changes and adap-
tation actions), and self-adaptive (proactively adapting as the
environment/system changes to met operational goals). Addi-
tionally, a global process is complicated by the ever-changing
influences of the dynamic environment. On the other hand, a
fully distributed scheme (i.e., no centralised control and only
the autonomous taxis perform decisions) will neither identify
globally optimal solutions nor close to optimal approximations
due to communication and neighbourhood restrictions as well
as the selfish behaviour of the subsystems [10]. This will fur-
ther entail unfairness and decreased levels of service for people
and goods at less prominent locations. Besides these aspects
of the system organisation, the decision base cannot be handled
traditionally: (1) the dynamics of constraints and goal functions
introduce too frequent change, (2) reliable forecasts need to be
considered to allow for proactive behaviour, and (3) we need to
model and consider uncertainties to allow for appropriate de-
cisions, where we need to distinguish between the inherent un-
certainty of a problem and the uncertainty caused by insufficient
information (in both aspects, aleatoric and epistemic).

This article extends the position paper from [11]. The ma-
jor contribution is the vision of integrated system behaviour
that combines the advantages of global optimisation with uncer-
tainties and local self-improvement using autonomous learning
techniques. We assume that such an approach results in sev-
eral novel techniques and concepts that allow for establishing
and operating the swarm-fleet-infrastructure (SFI—that infras-
tructure in which the autonomous taxis operate) as an example,
while achieving three general goals: a) allowing for increased
robustness against intentionally wrong or even faulty behaviour
through flexible plans, b) an improved utility of both, the au-
tonomous subsystems (i.e., the autonomous taxis) and the over-
all SASO system (here: the SFI) fulfilling especially goals of
the local authorities as the possible operator, and c) a fast adap-
tation to changes in the characteristics of the environment and
the learning problem (e.g., in terms of concept drift/shift).

Compared to the initial position paper, this article: i) pro-
vides an in-depth description of the swarm-fleet infrastructure
introducing the different roles and responsibilities, ii) extends
the use case towards a generic architecture for the design of hy-
brid SASO systems—combining central optimisation with dis-
tributed, intelligent decision making—including the definition
of the particular components, and iii) presents an extended re-
search roadmap with preliminary work that will serve as a basis
to establish the vision of proactive, hybrid learning and optimi-
sation system.

The remainder of this paper is organised as follows: Sec-

tion 2 introduces the envisioned smart taxi fleet scenario and
highlights that this is neither manageable by a centralised nor
a distributed approach and requires proactive behaviour. Sec-
tion 3 then presents our concept for a hybrid system optimisa-
tion that combines system-wide planning of possible behaviour
corridors by the “swarm fleet infrastructure” (SFI) with au-
tonomous learning of the most beneficial local behaviour and
anticipatory state prediction explicitly modelling the inherent
(un)certainties. To pave the path for this vision to become real-
ity, Section 4 presents a research roadmap to establish such an
integrated hybrid optimisation scheme in the sense of combin-
ing system-wide planning of behaviour with autonomous learn-
ing for distributed decision making. Section 5 discusses related
work. Finally, Section 6 summarises the article and gives an
outlook on future work.

2. Autonomous Taxis in the Swarm-fleet Infrastructure

In-line with the ongoing achievements in autonomous driv-
ing, the development of “autonomous taxi” (AT) services has
been envisioned as a possible combination of different modes
of transport, i.e., private cars, shared cars, and taxis [12]. The
vision postulated by this article is that a user has on-demand
access to a driverless taxi service but at a cost close to using a
private car for the trip. This includes the assumption that fu-
ture demands (i.e., as soon as a certain fraction of cars drives
autonomously) for such trips are comparable to those of today
or even higher.

We further assume that the traditional ownership and utili-
sation pattern will not be replaced completely by novel trends,
i.e., the majority of cars is still owned by individuals having
exclusive access to their car if needed [13]. This also includes
the traditional working-hours and commuting model: A private-
owned car is typically used for commuting to the job and back
in the morning and afternoon peak hours on standard working
days. In the remaining time, it is parked and not used. In ad-
dition, during bank holidays and weekends, the car is used for
vacation trips and regular household business, such as shop-
ping trips. While the working-day scenario follows an approx-
imately static behaviour, the weekend and vacation profile is
characterised by higher dynamics and the corresponding un-
certainties. Consequently, this article initially focuses on the
standard work-day profile.

Technically, we model the application scenario as an inter-
play of autonomous, distributed agents (the taxis) and an addi-
tional centralised service that does the accounting and guides
the autonomous decisions of the agent. In particular, we argue
that both traditional attempts to system modelling, i.e. fully
centralised and fully distributed, are not appropriate due to sev-
eral reasons. On the one hand, a centralised approach would as-
sume that the SFI service is in charge of controlling the individ-
ual cars at decision-level (i.e., where to wait, which job to take,
etc.). This would require constant communication of all internal
state variables and perceived environmental conditions (which
is not desirable due to privacy issues, primary goals given by
the owner, and the locality of the decisions’ impact, and it may
have a negative impact on the acceptance of the system if the

2



user loses control of its car), resulting in massive message load
and high-frequency re-planning that is either not possible with
current communication and computation infrastructure or not
desirable due to the massive cost caused by such a scheme. Fur-
ther, it reduces the scalability of the approach and introduces a
threat to robustness since local behaviour has to wait for cen-
tralised decision to be taken until a response is possible – intro-
ducing delays that are not desired. On the other hand, a fully
distributed approach without a centralised accounting and man-
aging approach will lead to unfair distributions of jobs if agents
behave uncooperative or egoistic. It will further neglect unpop-
ular areas since jobs are too seldom to wait for them there or too
far outside without explicit compensation. This may also have
a negative impact on the service quality, the reaction times, and
the reliability – with again implications for the acceptance (here
at user-level). This means that – at least for the local authority
– key requirements are hardly fulfilled, while individual taxi
providers would benefit at the cost of the general public.

This section introduces the swarm-fleet infrastructure (SFI)
as a centralised service environment in which the autonomous
taxis fulfil their tasks (Section 2.1). This includes an introduc-
tion of all stakeholders of the overall SFI system. Afterwards,
we focus on the privately-owned cars that serve as individual
autonomous taxis (Section 2.2). Section 2.3 generalises the
scenario in the context of hybrid SASO systems. Section 2.4
transfers the concepts to other application domains. Finally,
Section 2.5 discusses threats to validity w.r.t. the scenario.

2.1. Centralised Perspective: The Swarm-fleet Infrastructure

The core of the SFI is an open service that is responsible
for mapping customer demands (i.e., requests for taxi rides) to
available resources. This should follow the goal of establish-
ing fast and efficient provisioning of jobs, which also allows
for customer satisfaction, fairness, and decreased congestion in
traffic, for instance. We do not assume an owner model, i.e., the
SFI can be operated by a commercial company (which results
in a fee-based profit model), by local authorities (i.e., the city
in which the fleet operates), or a non-profit foundation.

Our SFI is available as an open service. Customers can re-
quest transportation services that are published to all partic-
ipating ATs. Furthermore, the SFI can apply sanctions and
incentives to steer the behaviour (e.g., monetary incentives to
wait in unattractive regions or decreased transport fees in very
popular regions). The individual AT is then responsible for ac-
cepting/performing jobs, optimising its own operation (i.e., re-
fuelling, maintenance, parking fees) and guaranteeing the ser-
vice level of the owner. In more detail, the three basic tasks of
the SFI are (see Figure 1):

1. Publish new jobs to the ATs: Provide the interface to the
customers that can specify their rides and preferences, re-
act with predicted service times, and manage the account-
ing. Please note that the SFI just enters the jobs and does
not select the specific taxi—any taxi fulfilling the desired
characteristics (e.g., number of passengers, comfort level,
price level, transport capabilities), which is first entering
the place is taking over the job.

2. Provide a continuously adapted plan for roles of taxis: Op-
timise waiting positions allowing for an improved cover-
age based on predicted demands, the current distribution
of cars, and their capabilities.

3. Steering the autonomous behaviour using sanctions and in-
centives: Adapt the commission fees for types or locations
of rides, pay compensation for waiting in less attractive
regions, or manage tolls for roads.

Since the main purpose of the SFI is to establish an effi-
cient and optimal mapping of customer demands to available
resources, we can initially distinguish three stakeholders (as in-
dicated by Figure 2): the customers, the cars, and the SFI.

Customers or clients are individuals or a group of individu-
als that want to book a drive. The customer participates in the
SFI as a user of the service. The different clients have varying
needs, e.g.:

• low waiting time (i.e., fast pick-up),

• short trip times,

• cost-efficient rides (i.e., low cost per trip),

• comfort needs (e.g., scenic route or smooth driving),

• transportation of goods (i.e., transportation space), or

• personal attributes (e.g., smoking permitted).

This is further combined with several possibly conflicting
quality-of-service aspects including: i) preference for cars with
high reliability, ii) preferences for luxury cars, iii) preferences
for cars with high reputation or trust values, or iv) safe routes.
Consequently, the customer should be able to define prefer-
ences and he needs to have access to real-time information
about the service such as waiting time, travel time, and costs
including possible alternatives to optimise the trip choice.

Taxis: We assume heterogeneous types of taxis within the
SFI. This includes cars from different manufacturers, of varying
sizes, or different engine types. We assume that each car can be
modelled as a self-motivated agent that has a set of individual
desires (e.g. high healthiness status, reputation, cost-efficiency,
or reduced wear) and beliefs (i.e., a model of the environment,
users, and the self based on observations). Such a car is owned
by a private or commercial actor and is able to make its own
decisions. We discuss the car as an autonomous taxi with its
goals in the next subsection.

Swarm-Fleet Infrastructure: The SFI is provided and con-
trolled by an operator. The goals are correspondingly reflecting
the intentions of the operator (e.g., a local authority aiming at
a fair and reliable taxi service or earning money through fees).
Its main purposes are the acceptance, distribution, and billing
of requests for trips. For this purpose, it offers an open envi-
ronment in which anyone can participate (based on an initial
registration). For each car, the SFI creates and maintains a pro-
file with the required characteristics, such as a unique identifier,
the current position, planned route, or the availability of the car.
As a second purpose, the SFI is responsible for an optimised
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Figure 1: Interaction of players in the SFI. The overall SFI infrastructure is controlling the jobs and steers the system behaviour by providing optimised roles
combined with incentives/sanctions issued via norms (in the sense of a norm-based agent system, [14]). The figure highlights an individual autonomous taxi
(equipped with an observer/controller tandem as described in Section+2.2) acting in this infrastructure that has to compete and cooperate with other taxis.

and efficient planning of the taxi service. For this, continuous
optimisation of waiting places as well as a role-based distribu-
tion of vehicles within the service region is carried out. This
will be done proactively on the basis of forecasts of short and
medium-term developments in order to achieve the goals (ex-
pressed as a utility function) as well as possible. As a direct
control of the autonomous units is not preferable due to the in-
terference with the autonomy of the individuals, the massive
communication effort as well as the frequency of changes (both
from the environment and by deviation of the autonomous units
from the plan) is not possible, the SFI has intervention possibil-
ities through incentives and sanctions [10]. These intervene in
the settlement of the trips by paying compensation or withhold-
ing increased fees. This is made known in the system by means
of norms and continuously adapted to changing circumstances.

Besides these three general stakeholders, the SFI approach
comprises several other parties (according to [16]. We intro-
duce the most prominent ones in the following.

Private owners: As mentioned above, we assume private-
owned cars as the backbone of the SFI system. Conse-
quently, we assume private individuals or households owning
autonomous vehicles, and sharing them with the system during
idle periods. The goal for these private owners of participat-
ing in the SFI comprises several (potentially conflicting) goals.
The most important ones include earning money, provisioning
of the car when needed, maximisation of the lifespan of the car,
low administration effort (e.g., due to automated maintenance,
repairs, parking, and charging), as well as keeping the car safe
(avoidance of confrontations and malign customers).

Commercial taxi companies: Besides the main usage pat-
tern of the SFI postulated by this article (sharing privately-
owned autonomous cars as taxis), we further allow for commer-

cial companies as operators of sub-fleets of autonomous cars.
The cars within these sub-fleets should collaborate to maximise
the owner’s profit and avoid competitions within the peer group.
Although these fleet operators may have more market power
and a higher potential of optimising their profits (e.g., by more
data and a better statistical foundation for planning and deci-
sion processes), we will not distinguish between owner models
in the remainder of this article.

City/local authority: The AT participating in the SFI use
the available urban traffic infrastructure. The local authority
owning, operating, and maintaining this road network has the
task to ensure the satisfaction and safety of their citizens. An
array of subgoals can be inferred including minimal delays
(i.e., no traffic jams), minimal pollution (i.e., exhaust, noise),
minimised wear on infrastructure, guaranteed access for emer-
gencies, avoidance of peaks in energy demand, and minimi-
sation of re-structuring efforts. Consequently, the SFI-driven
autonomous taxi service is to a certain degree a competitor of
typically city-operated (or at least city-charged) public trans-
port services. Consequently, an integration of both systems or
coordinated behaviour is desired. However, such an AT service
can also be used as an instrument for unburdening public trans-
portation systems that are reaching the limits of their capacity
as well as making their behaviour flexible.

Power supplies: Since we assume an extensive use of elec-
trically powered vehicles, the charging cycles of the vehicles
are elementary components of the system. Uncoordinated load
peaks can occur at this point. Consequently, the local network
operators have an inherent interest in balanced use of the en-
ergy networks through coordinated charging cycles (which is a
current research topic as well).

Mechanics: Besides the taxi service, a second goal of the
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Figure 2: An autonomous car is equipped with an additional control module (here implemented as observer/controller tandem according to [15]) and operates within
the SFI: It serves a user, optimises the operations (e.g., parking, maintenance, charging), and accepts and performs rides (in competition with others cars) offered by
the SFI.

AT is to take care of maintenance and repairs if necessary. We
summarise the stakeholders providing different garage options
as ’mechanics’. Their primary goal is to earn money from of-
fering these services, and this primary goal is supported by sat-
isfied customers, minimised lineups, minimised emergencies,
minimised drop-in times, great numbers of long-term contracts,
and a maximised load. In addition, the business schedule needs
to be aligned with the number of available employees and their
working hours.

Other stakeholders: The previous list names the most
prominent stakeholders and their goals. Of course, several fur-
ther stakeholders with the focus on optimising traffic flows or
commercial interest participate in the SFI system and impact
its operation, such as event locations (e.g., stadium operators),
car manufacturers, car dealers, parking space providers, or shop
owners.

2.2. Decentralised Perspective: The Autonomous Taxi

Compared to the current usage pattern of privatly-owned
cars, the benefit of participating in the SFI is the transformation
of current “idle” phases (i.e., cars are not used for the majority
of the day) into productive time. Technically, the autonomous
and self-driving car is equipped with a self-motivated control
unit realised as Observer/Controller tandem [15] following the
terminology of OC [3]. However, alternative terminology may
be used as well (e.g., ’MAPE-k’ cycle in Autonomic Comput-
ing [4] or the LRA-M loop in Self-Aware Computing [5]). In-
dependent of the wording, the concept is always the same: A
management unit is added on top of the productive part (here:
the car) to establish a robust and optimised self-adaptive and
self-organising behaviour. In our case, the task of this au-
tonomous unit (i.e., the Observer/Controller tandem of an in-

dividual autonomous taxi) is to earn money and to be available
to the owner. In particular, the adaptation and planning logic of
this component has to handle several (potentially conflicting)
goals at the same time:

• At first, the availability of the car for its owner must be
guaranteed, even if situations change. This reflects the tra-
ditional usage pattern, e.g., commuting to work and back,
as well as spontaneous changes in these patterns.

• The first goal is to earn money as AT service brokered by
the SFI. With the main purpose as constraint, this AT ser-
vice is restricted to the local environment.

• The second goal is to take care of the required maintenance
and re-fuelling autonomously. This includes scheduling
charging cycles (i.e., assuming electric vehicles) with the
corresponding cost profiles and availability of chargers
(includes garage appointments).

Figure 2 illustrates an example of the integration of a spe-
cific car (in the lower middle of the figure)—which is assumed
to be controlled by an on-board autonomic manager—into the
SFI. Besides determining and accomplishing an optimised be-
haviour based on these goals, the car has to consider a set of
secondary goals, for instance: i) the car should be clean (which
renders the transportation of dirty goods unattractive or requires
subsequent cleaning time), ii) it must maintain a given charging
threshold to allow for non-stop rides, or iii) it should decrease
parking and travel cost.

2.3. Hybrid SASO System Constellations
The SFI scenario is meant as a challenging scenario for a

wider class within the domain of SASO systems that are char-
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acterised by specific characteristics. In this subsection, we ini-
tially specify the control problem in the SFI scenario to em-
phasise the conflict in goals between the system-wide operator
and the participants. This further serves as a basis to generalise
the concept towards a sub-class of SASO systems. To highlight
such a general character, we discuss further application scenar-
ios where the underlying characteristics of this sub-class need
to be addressed as well.

Figure 3 presents a refined perspective on the control prob-
lems in the SFI scenario. Since this paper presents a first con-
cept rather than a specific implementation, there is inherent un-
certainty about the problem. In particular, the figure provides
a first sketch of the control problem at the two different lev-
els with the envisioned state, condition, and action variables as
well the different components or services required that are to be
analysed for defining the different components. Based on this,
a more formal approach will be needed as soon as the scenario
is realised.

The control problem of the centralised SFI takes observa-
tions from the environment and the traffic system that are com-
bined into a situation description in the observer component (as-
suming a system architecture following the Observer/Controller
tandem from the OC domain [15]). This information is then
used to adapt the system behaviour at different time scales:
Immediate task issuing and accounting is combined with long-
term system behaviour optimisation using norms and roles. The
figure names examples for the corresponding control parame-
ters. On the other hand, the AT are fully autonomous in the
sense that they are self-motivated and not subject to direct con-
trol of the SFI. Consequently, the figure lists the input variables
describing the local situation of each AT as well as the internal
status variables and the possible actions. Considering the two-
level control problem, we face different characteristics that are
typically not addressed in the standard SASO problems.

Openness: The system is by design open in the sense that
participants can join in or leave at any time. This also includes
that there might be attempts to veil or cover the individual iden-
tify or history.

Competition versus cooperation: There is competition be-
tween entities for maximising the individual benefit. How-
ever, cooperation would be beneficial w.r.t. global benefits (and
maybe also for local ones). Although being uncooperative (i.e.,
not considering the abstract global plan provided by the SFI,
agents can contribute to the overall benefit as they are taking on
jobs. However, they have a negative impact on other aspects
of the global goal such as a fair distribution). Still, entities
have only a local view and are limited in perceiving a global
state, which is required to possibly negotiate a fair assignment
of tasks.

Limited information: This means that the perception is lim-
ited to local sensor information, possibly enriched with the in-
formation provided by the urban traffic system and local neigh-
bourhood knowledge provided using, e.g., ad-hoc communica-
tion.

Dynamic environment: The control and decision problem
is facing high dynamics of both, the environment as well as
the optimal actions, which leads to high uncertainty and com-

plexity. This requires a kind of “Interaction-awareness” in the
terminology of Self-Aware Computing – the entities change the
environment through their actions (pick up - customer/task does
not exist anymore).

Proactivity: At both levels, i.e., the SFI operation and the
autonomous taxis, the planning horizon is crucial for efficient
and fast reactions, which requires proactive behaviour and re-
liable forecasts of the underlying developments. Proactive be-
haviour can help to decrease the reaction time as reactions op-
tions are calculated in advance for seamless adjustments with-
out a delay.

Autonomy: The task-aware actions and the optimisation of
behavioural strategies are fully decoupled and assigned to dif-
ferent entities: Local, taxi-based decentralised decisions and
learning to self-improve the own behaviour and central plan-
ning combined with continuous optimisation. Although there is
a need for centralised optimisation services based on a system-
wide perspective, compliance with global rules cannot be guar-
anteed since each AT is fully autonomous. However, the overall
system performance relies on mechanisms to enforce the de-
sired behaviour. This means that partly the SFI urges the unco-
operative participants to contribute to the goal achievement due
to sanctions and incentives.

As a summary, we can state that the two standard ways to
establish SASO systems are not possible in the SFI scenario:

• A fully decentralised system architecture is not possible,
since the individual goals are not in-line with the system
goal of an operator and a global view for optimising de-
cisions is not available (due to vast communication efforts
and limited communication speed as well as privacy con-
siderations).

• A fully centralised system architecture is not possible,
since individuals are by design autonomous and selfish,
rendering centralised control infeasible. In addition, a
fully centralised operation would be too complex, too slow
to adapt to changes and come with a single point of failure.

2.4. Further Application Scenarios

The SFI scenario is meant as a challenging scenario for a
wider class within the domain of SASO systems that are char-
acterised by the common characteristics outlined above. To
provide a basis to generalise the concept towards a sub-class
of SASO systems, briefly discuss further application scenarios
where the underlying characteristics of this sub-class need to be
addressed as well. Since not all scenarios are directly mappable
to the SFI scenario, i.e. some aspects are not fully visible, We
distinguish between two perspectives again: non-competitive
and competitive scenarios.

2.4.1. Non-competitive Scenarios
Logistics (one company): Here, the lorries are owned by

one company and are typically not competing. However, as-
suming autonomous driving for lorries as well, such a scenario
is covered by the SFI characteristics as follows: a) Instead of
passengers, the autonomous lorries compete for transportation
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Figure 3: System model of the SFI system and the participating autonomous taxis. The figure shows examples for the different input and output variables as well as
the status description of the taxis.

of goods (which can be turned into the same setting as the SFI),
and b) the local behaviour of the lorries has to improve while
taking guidance of the owning company into account that is
done as a continuous optimisation and planning routine.

Platooning coordination: Platooning refers to the concept
of coordinated driving to, e.g., safe fuel due to the slipstream
effect. In such a typically motorway-based scenario, the self-
motivated autonomous cars or trucks decide which platoon to
establish or join while optimising their own benefit. In turn, a
system-wide optimisation of platoons brings in the perspective
to optimise the infrastructure efficiency, for instance.

2.4.2. Competitive Scenarios
Manufacturing: In Industrial Production, several plants of

the same manufacturer or those of competitors can apply for
the same processing steps of goods. In Industry 4.0 applica-
tions, this can be broken down into individual machines that
have to autonomously organise themselves in groups and, con-
sequently, also compete for resources.

Logistics: Already in current settings, large companies such
as Amazon distribute delivery jobs to autonomous and inde-
pendent drivers that compete based on characteristics such as
reliability or locality. Although several aspects are similar to
the SFI scenario, the major decisions and optimisation are done
by the operator.

Pervasive Systems: Such systems assume the ubiquitous
availability of devices. Here, competition is faced regarding
variables of the shared environment, while the system setup
combines autonomous units with a centralised system goal.

Smart grid environments: The introduction of autonomous,
self-motivated units such as photo-voltaic and wind energy

plants or electric vehicles and dynamic storage units are con-
tinuously transforming the previously centralised energy grid.
In such a hybrid smart grid structure, we face the challenge of
overall network stability (as a balance between power genera-
tion and utilisation as well as capacity limits), while the indi-
vidual participants act self-motivated with limited knowledge.

2.5. Threats to Validity

The proposed scenario is presenting a possible use case for
autonomous driving in the future, so details of the scenario are
uncertain. One important aspect might be the existing traffic
regulations. It might be possible that central coordination could
be to some extent defined by law. Also, the autonomy of ve-
hicles could be restricted, e.g., in the case of privately owned
vehicles a limitation of the allowed travel distance per day or
regulations about the number of people in a publicly available
vehicle. On the other hand, it might be also possible the gov-
ernmental actors can influence the local decision-making, e.g.,
by setting incentives for following the plan from the central in-
stance.

This results also in uncertainties regarding the specific im-
plementation; hence, we rather present the first concept in this
paper. Accordingly, the system model is on a higher level of
abstraction and will be finer conceptualised in the future. The
same is true for the specific algorithms for prediction, determi-
nation of incentives, calculation of plans and activities and there
like. Based on the next experiments, a more formal approach
will be developed.

However, the mentioned example of Waymo in the introduc-
tion and activities of Uber shows that companies working on
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those topics and the transition into practice does not seem too
far in the future. The future will show, how robust the assump-
tion will be. Nevertheless, the scenario has merit for research
in the mentioned constellation of SASO systems, which—as we
have discussed above—can be found in many different applica-
tion areas.

3. Hybrid Adaptation and Learning

The interplay between SFI and the set of ATs illustrates a
very interesting challenge for future SASO system constella-
tions that are characterised by

• openness (i.e., participants can join/leave at any time),

• competition (e.g., among the different ATs for jobs),

• dynamics (e.g., changing demands for taxi rides depending
on the time of the day and depending on events such as a
football match), and

• autonomy (i.e., a centralised SFI cannot tell the individual
cars what they have to do—they decide on their own based
on individual goals and utility functions).

Consequently, the SFI example illustrates that traditional ap-
proaches to system control as known in the SASO domain reach
their end. Fully centralised planning and optimisation schemes
will not work since the plan is obsolete as soon as the individ-
uals do not follow the plan—although such a central planning
unit is in general able to provide the best compromise (e.g.,
most efficient or fair) for all users. Fully decentralised decision
schemes may converge to non-efficient and non-balanced (i.e.,
service times for customers in different regions of the city) so-
lutions. Fully reactive solutions will not be able to react fast
enough on the dynamics of the customer demands and the be-
haviour of the other participants in the system—and will prob-
ably fail to serve unusual events (e.g., customers leaving a foot-
ball match or a concert) with an acceptable service level (mea-
sured, e.g., in waiting times).

To address these challenges, we generalise the example of
the SFI as outlined above. We define a parallel process es-
tablished by a system-wide Observer/Controller unit [15] as
known from the Organic Computing domain [3] and distributed
autonomous subsystems that are also equipped with their own
Observer/Controller units. For the system-wide unit, we rely
on the tasks and design as depicted by Figure 1. In addition to
the illustration given in the figure, we assume that an observer
component is responsible for gathering the environmental con-
ditions including the states of the subsystems by fusing external
sensor information (e.g., current location or traffic density) with
reports of the subsystems. Determining the states of subsys-
tems is augmented with forecasts of relevant system variables.
Together with a quantification of the underlying uncertainty and
detection of abnormal conditions, the generalised descriptions
of the current conditions are reported to the controller unit that
is responsible for self-improving its decision strategy, providing
optimised plans for the system behaviour including possible be-
haviour of autonomous subsystems, and guiding the behaviour

of the autonomous subsystems using norms (following the ter-
minology of norm-based agent systems [14]).

Besides the SFI-based planning mechanisms, the au-
tonomous units (i.e., the taxis) need an appropriate technical
foundation to act successfully in the shared environment. Based
on the Observer/Controller framework [15] as known from the
Organic Computing domain [3], we define a multi-layered ar-
chitecture for these autonomous subsystems. Figure 4 illus-
trates this architecture.
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Figure 4: The architectural concept for realising the autonomous subsystems,
illustrated using the example of an autonomous taxi. We distinguish between
several layers that come with increasing time horizons. The usage of forecasts
can allow for a better time-coupling of these layers. The resulting car with its
three-layered architecture is embedded in the SFI infrastructure that – in general
– adds an additional layer on-top. However, the upper layers of the taxi may
also be performed externally, e.g. integrated into cooperative structures.

On the bottom layer (i.e., Layer 0), the productive part is in-
tegrated into the architectural concept. In the SFI scenario, this
is the autonomous car that should serve as a taxi. This encap-
sulation requires the definition of interfaces for observing the
internal and external conditions as well as modifying control
parameters (e.g., current destination, route choice, etc.) accord-
ing to [17].

Based on the encapsulation performed by Layer 0, Layer 1 is
responsible for adapting the behaviour to current needs. There-
fore, an observer unit establishes an environmental-awareness
by providing a description of the current status augmented with
forecasts of the expected behaviour. This serves as input to the
controller that combines the decision control with reinforce-
ment learning capabilities. The result of this process is a re-
configuration of the productive part using the control interfaces
and an update of the knowledge base encode the most appro-
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priate behaviour in the different conditions. We assume that
evolutionary rule-based reinforcement learning techniques will
play a key role to implement this behaviour, as e.g. outlined in
[18] for urban traffic control or in [19] for smart cameras.

Since Layer 1 establishes an adaptation behaviour that acts
synchronously with the productive part, Layer 2 augments this
control loop with a planning component. Here, again an ob-
server unit is responsible for monitoring the system-wide be-
haviour (e.g., expressed in the norms or by cooperation among
cooperating subsystems). A self-awareness is established that
assesses to which degree the current strategy is achieving the
utility. In the SFI scenario, the observer also monitors the in-
coming jobs and filters them for promising candidates. In turn,
the controller unit decides about the currently followed tasks
(e.g., serving as a taxi or recharging in the SFI scenario) and
the particular job (i.e., which customer to serve). This is com-
bined with an optimisation that tries to find a trade-off between
the conflicting goals. Based on that, a knowledge base is main-
tained that models the task behaviour.

Finally, Layer 3 provides means for long-term system evo-
lution. A detection of novel process and abnormal condi-
tions serves as an indicator if anything changes fundamentally
(e.g., novel customer demands, new competitors, changed street
topology). These indicators serve as input to the controller unit
that maintains the overall strategy (encoded in a system model)
followed by the subsystem, which is also subject to reinforce-
ments. Here, also concepts such as (collective) self-reflection
are established that identify inappropriate or missing knowl-
edge, e.g., according to [16].

Several concepts exist that might be integrated into the dis-
cussed use case, for example the architecture (based on [15]),
a concept for the SFI use case [11], and basic SASO mech-
anisms, e.g., for coordination of entities [10, 20], achieving
fairness [21], or optimisation-based adaptation planning [22].
However, the described hybrid learning and optimisation sys-
tem requires research efforts for the conceptualisation of novel
techniques and approaches. In the following section, we outline
the most urgent challenges in this context.

4. Primary Research Challenges

The concept presented above demonstrates that the vision of
proactive (through the integration of forecasts) hybrid learning
and optimisation requires combined efforts from different re-
search directions. We need a consolidated and integrated ap-
proach that combines the current and upcoming research in-
sights from three different core fields: a) self- and environment
awareness in SASO systems, b) distributed autonomous learn-
ing of individual entities in shared environments, and c) cen-
tralised planning and optimisation. In addition, several further
fields will have to provide valuable insights and techniques as
soon as the core approach has shown its advantages in appropri-
ate settings, these secondary fields include i) security, ii) com-
munication, iii) computational trust, iv) incentivisation, and v)
user-centric behaviour to name just the most urgent ones. Fur-
thermore, these research efforts have to be accompanied by re-
search on a near-to-reality testbed to demonstrate and analyse

the behaviour in detail. Following the discussion above, we
propose to use the scenario of AT services as a basis for such a
testbed. In this section, we present a research roadmap towards
investigating and implementing such an approach that distin-
guishes the efforts according to the above-introduced fields.

4.1. Self- and Environment-awareness in SASO Systems
As a first building block, we need to develop and investigate

models that describe the local (i.e., AT-based) and global (i.e.,
SFI-based) state. We propose to make use of probabilistic mod-
els that are based on parameter estimation techniques reflecting
the uncertainty arising from the observations. In this context,
we have to identify model inputs and outputs relevant for the in-
dividual cars and the SFI (i.e., according to Figure 3). We need
online parameter estimation techniques (i.e., online-learning)
that consider the timeliness of observations and knowledge.
We may assume an initial, prototypical model being available
that has to be “customised” to one or a set of operation states
regarded as being normal. Based on this expected behaviour
model of the system, we focus on key techniques that make an
AT self-aware. In contrast to [9] we further distinguish between
dynamics/changes of the system itself (self-awareness) and its
operational environment (environment-awareness) – primarily
to have two simpler models (one for the system, one for the en-
vironment) instead of one complex model. Deviations from a
normal state (e.g., other service behaviour due to dynamic cus-
tomer constellations, changed owner demands, increase of fuel
cost, or a fault of the AT) must be detected to trigger a self-
adaptation using the aforementioned methods [23]. To detect
changes—called concepts shifts or drift in the field of stream
learning [24]—we rely inter alia on techniques from the field of
Gaussian processes. The trade-off between timeliness and cor-
rectness of reactions has to be investigated in detail as temporal
performance is frequently ignored in current research. Adapta-
tion steps can also be triggered by the observer (internally) or
the SFI (externally), e.g., due to changed goal functions [25].

A second building block covers research on methods for fore-
casts of the state of the individual taxi and the overall SFI (in-
cluding customer demands). The focus is on probabilistic fore-
casts [26] with well-calibrated neural network models reflecting
the confidence in estimates based on uncertainty in inputs and
available data [27, 28, 29]. These uncertainty values then serve
as a basis to assess the reliability of the forecasts—which is
used to decide to which degree the predicted developments are
taken into consideration or the current conditions are used.

4.2. Distributed Autonomous Learning
A core element of the autonomous taxis is the ability to act

locally and to improve this behaviour over time. Due to the
vast situation and action spaces for the individual taxis, we fo-
cus on reinforcement learning techniques that are specially de-
signed to generalise situations without the need for enormous
training data: learning classifier systems. Especially variants of
Wilson’s Extended Classifier System (XCS) [30] are promising
candidates due to their generalisation capability and the differ-
entiation between accuracy and strength. The local learning ap-
proach (i.e., at each autonomous vehicle) requires a variant of

9



XCS capable of learning the most efficient strategy—which in-
cludes dynamic search spaces, controlled exploration, and real-
world restrictions (e.g., safety considerations). In contrast to
standard XCS systems, we need to incorporate multiple goals
and switch between them online, which requires novel encod-
ing and credit assignment schemes of the gathered knowledge.
Due to the limit availability of feedback, we need to introduce
mechanisms for efficient knowledge exploitation (e.g., interpo-
lation, transfer, or collaborative approaches). In turn, powerful
techniques based on Deep Neural Network technology can be
used to tackle the learning problem. However, they lack in-
terpretability of their knowledge and explainability of their be-
haviour rendering a direct utilisation in scenarios where taxis
act on behalf of humans as less desirable. However, a possible
direction of research is to combine the advantages of XCS with
deep learning concepts, as proposed in [31].

Based on the self- and environment-awareness mentioned
above, the individual autonomous taxi can reflect about its own
knowledge, as e.g. outlined in [16]. Especially when being
embedded in a larger constellation (e.g. a community of trusted
individuals [32]), a collective perspective can identify outdated,
missing or even wrong knowledge. This can be combined with
an opportunistic consideration of dynamically available knowl-
edge sources (e.g., the owner, users, other cars, or unstructured
data from the Internet) [33]. Both directions require a possibil-
ity to assess the characteristics of their own knowledge, which
is perfectly in-line with the concepts of smart and adaptive sys-
tems.

In general, the task of learning the locally optimal behaviour
is closely related to the field of multi-agent reinforcement learn-
ing (MARL) [34, 35]. For an introduction to the field, a brief
clarification of terms and a detailed taxonomy is given by Bu-
soniu et al. [34], for instance. Considering this taxonomy, the
learning problem defined in this article is related to fully com-
petitive and mixed games in both variants, static or dynamic.
Since one possible way to model the global payoff is by defin-
ing a function of the local agents’ payoffs, it can also be con-
sidered as a fully cooperative game for those taxis that belong
to the same authority or are pooled in some way. In particular,
the idea of modelling the learning problem lies in the approach
to turn it into a Markov Decision Problem and to represent the
various possible states of the individual taxis in such a process.
This can be then solved by different kinds of reinforcement
learners that are either backed by technology for longer-term
predictions or the different methods summarised under the term
self-awareness above.

Also in [34], the authors state that there is a severe complex-
ity resulting from coordination in MARL scenarios – which is
an open issue and a major issue in MARL systems. There-
fore, novel learning concepts focusing on an online adaptation
of input and action spaces as well as a dynamic complexity re-
duction of the learning problem are required - which we claim
as being one of the major research challenges in the context of
autonomous learning. For instance, a selection of those criteria
and entities that need to be considered in the learning problem
at runtime may be beneficial, e.g. following the methodology
proposed by [36].

4.3. Centralised Planning and Optimisation
For the optimised SFI-based planning, we require fast, any-

time algorithms that allow for determining corridors of be-
haviour rather than pre-defined solutions. The complexity
of the large-scale optimisation problem renders exact solu-
tions infeasible—consequently, it has to be investigated which
heuristics are particularly applicable to identify ’good enough’
solutions. Additionally, the optimisation problem then has to be
extended to consider constraints (multi-objective optimisation
including, e.g., a load of roads, pollution state, priorities given
by local authorities) and overall system control figures (e.g.,
the budget of incentivisation). Further, we strive for many-
objectiveness, i.e., fulfilling various individual goals simulta-
neously.

For tackling those challenges, we can build on previous
works. In [22], we showed that the choice of a heuristic ad-
ditionally requires to take the current situation and constraints
(e.g., the convergence of algorithms) into account to build a
situation-aware choice of the heuristic for optimisation. In the
SFI scenario, this is additionally complicated as the environ-
ment is highly dynamic and unstable. For taming this uncer-
tainty, the optimisation requires degrees of freedom. Using a
learning approach helps to reduce the ranges for those degrees
of freedom. Additionally, the planning has to balance the costs
and investments as well as the earnings to provide a fair solu-
tion. In [21], we compare several compensation approaches to
balance investments in coordination. Those approaches rely on
trying to equally share negative impacts. However, in the SFI
scenario, the planning requires to equally share the earnings.
Both dimensions must be represented by the optimisation func-
tion. Additionally, a cooperation perspective [10] of the taxis
or approaches that focus on interacting systems to compete for
shared resources [37] can be studied.

In the ideal case, entities might behave altruistically [10],
even in case the global optimal adaptation plan decreases their
individual utility. As the autonomous resources follow their
own—potentially conflicting—objectives, the integration is ad-
ditionally challenging as those behave self-ish and competi-
tively. Consequently, resources that are disadvantaged by the
cooperation might potentially reject participation. To tackle
these issues, we described in [10] different coordination mech-
anisms that can help to identify a solution for cooperation
that balances the disadvantages across several instances and
increase the motivation for cooperation: Those coordination
mechanisms can be categorised into (i) selfish behaviour, (ii) al-
truistic behaviour, (iii) negotiation, (iv) enforcement of central
decision making, and (v) rewards/incentives. Especially rele-
vant in the context of the SFI scenario are rewards and incen-
tives, but also enforcement of central decision making through
sanctions. We plan to study the issues from such situations, in-
cluding the identification of (i) mechanisms to reward entities
for decreased utility and (ii) interaction mechanisms to control
the behaviour of the autonomous taxis through sanctions.

4.4. Proactive Adaptation
The time of adaptation is a central question [8]. From the

user’s point of view, proactive adaptation is preferable, since
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it avoids interruptions in the user’s workflow with the system.
On the other hand, the prediction algorithms needed for proac-
tive adaptation have several issues. They are complex to de-
velop, their suitability is highly dependent on the specific pre-
diction tasks, and faulty results can cause suboptimal or mali-
cious adaptations. Therefore, many approaches focus on reac-
tive adaptation [8]. However, the choice for proactive or reac-
tive adaptation is not exclusive. Mapping the adaptation pro-
cess to the Autonomic Computing MAPE cycle [38], the ba-
sic functionality for adaptation is monitoring the environment,
analysing for change, computing adaptation plans, and execut-
ing these plans. Reactive and proactive adaptations involve sim-
ilar activities regarding monitoring, planning, and executing,
but strongly differ in the analysing phase. With reactive adapta-
tion, the monitored data is analysed for abnormal patterns. With
proactive adaptation, the monitored data is used to forecast sys-
tem behaviour or environmental state. From the user’s point of
view, this is preferable, as it reduces interruptions and adapta-
tions can be optimised for a sequence of events [37]. Further,
proactive adaptation includes context adaptation via actuators
in order to avoid unwanted situations. It is possible to com-
bine proactive and reactive adaptation such that proactive adap-
tation is the goal, and reactive adaptation is used as a backup
mechanism, i.e., if a change was not predicted (e.g., failing of a
component).

In the SFI, we follow a hybrid approach w.r.t. the time di-
mension. The central element acts proactively, as the calculated
plans integrate predictions of the future system and environ-
ment conditions as well as assumptions about behaviour. The
decentral elements react to the situations, using the knowledge
from the plans of the central entity. However, proactive adap-
tation has several challenges, especially in scenarios in which
multiple systems share the context/environment. It is highly de-
pendent on the correctness of the predictions, as faulty predic-
tions can cause suboptimal adaptations. The major challenges
here are predicting the time of an event with high enough ac-
curacy, as well as predicting user behaviour and rare events,
especially taking the incompleteness of the information into ac-
count. In the SFI scenario, especially the behaviour of the local
entities are an important factor that needs to be taken into ac-
count.

4.5. Testbed

As outlined in Section 5.2, related work focuses on simula-
tions of autonomous taxis by mostly replacing traditional taxis
operated as fleets of a few large-scale vendors with autonomous
taxis operated with the same owner model. These simulations
are typically very abstract models of city environments using
MATSim4[39], for instance. In order to be able to investigate
the effects of traffic conditions as well as novel utilisation pat-
terns (e.g., already caused by the owner’s commuting pattern
and the subsequently limited availability schedule), we propose
to focus on realistic traffic topologies and demands.

4https://www.matsim.org/

We propose to use the ’Organic Traffic Control’ (OTC) sys-
tem [18] as a basis for developing an SFI simulation since OTC
already provides a realistic traffic simulation controlling (which
is missing in the state-of-the-art for AT services, see Section 5).
OTC adapts and improves the efficiency of the green duration
of traffic lights locally at each intersection [18], coordinates
the intersection controllers without centralised elements to form
progressive signal systems [40], and routes streams of vehicles
based on a per-hop basis [41]. The distributed controllers com-
municate with each other via messages, e.g., using standard In-
ternet protocols such as TCP/IP. The system is based on an inte-
gration of the professional traffic simulator ’Aimsun Live’ [42]
that is widely used by traffic engineers world-wide. It relies on
real-world topology models (see Figure 5 for an example inter-
section located in Hamburg, Germany) and the corresponding
actual traffic demands and control strategies.

Figure 5: Example of an intersection model with Aimsun. The real intersection
is located in Hamburg, Germany. The model has been provided by local au-
thorities and has been initially developed by traffic engineers. It also includes
the real-world traffic data from a census and the actual traffic control strategies.

Based on using OTC, we can investigate how to integrate SFI
concepts and the corresponding AT behaviour. This further re-
quired to setup simulation models reflecting taxi-demands and
owner behaviour in combination with real-world topology mod-
els, disturbances, and customer models—accompanied by ap-
propriate metrics to assess the SFI’s success.

This opens perspectives for optional additional components
such as a trust and reputation system that may be incorporated
in the decision processes as well.

5. Related Work

In the following, we discuss related work for the SFI sce-
nario and the required technology from the field of SASO sys-
tems that is applicable in the context of the previously described
research challenges.
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5.1. State-of-the-Art in Related SASO Fields

Autonomous self-coordination: Works from this field focus
on resource allocation without external intervention for finding
an ordering of requesters by optimising a certain goal (e.g., pri-
orities, cost, or fairness). In the context of the SFI, we consider
three classes of autonomous self-coordination: (i) centralised
approaches, (ii) negotiation-based approaches, and (iii) emer-
gent approaches.

a) Centralised approaches use algorithms such as leader
election for choosing one specific node that acts on behalf of
the group (see e.g., [43] for an overview of algorithms). After-
wards, the resource allocation or coordination problem is han-
dled in a centralised manner with the leader deciding about the
current strategy. There are further concepts for exchanging the
leader if it does not act as expected, for example, measured in
terms of fairness metrics. Examples include [32] or [44].

b) Negotiation-based approaches are used alternatively to a
centralised solution due to reasons such as a single point of fail-
ure, exploitation of power, communication overhead, or a vari-
ety of attack vectors [45]. Especially in the context of multi-
agent systems, solutions among a group of autonomously acting
agents that are considered to be equal have been investigated.
Several situations can occur, where agents may not agree, but
still need to find a consensus. This helps to achieve overall
system reliability in the presence of a number of disagreeing
agents. In general, this is referred to as “consensus problem”
[46]. Approaches to tackle this include protocols (e.g., the Ter-
minating Reliable Broadcast protocol [47] or the Contract Net
protocol [48]) or mechanisms such as auctions [49].

c) Emergent-based approaches avoid explicit coordination or
management. In turn, the system is fully decentralised as agents
act autonomously without using explicit coordination or nego-
tiation techniques. For coordination purposes, this generally
refers to simple scheduling schemes, for example, first-come-
first-serve (see [50] for an overview). Alternative solutions in-
clude OC concepts (e.g., [51]).

However, none of the approaches considered so far explicitly
aims at establishing a hybrid optimisation scheme that is robust
to changing conditions and reacts on different time scales, while
simultaneously respecting the autonomy of individual subsys-
tems.

Hybrid SASO systems: From a software engineering per-
spective, two attempts of designing systems can be distin-
guished. While bottom-up attempts usually focus on more prac-
tical concepts, they suffer at a missing clear conceptual separa-
tion in the design. As a result, the developed mechanisms are
very specific for the underlying tasks. In contrast, top-down
approaches usually try to achieve clear responsibilities and en-
capsulation, rendering the approach more generally applicable.
However, this easily results in solutions that are less efficient
for a specific solution. Some work has been spent on soft-
ware engineering implications when establishing self-adaptive
behaviour: For instance, Sudeikat et al. [52] describe a design
concept for resource flow systems, where especially the coordi-
nation tasks are of interest; however, it does not consider learn-
ing and optimisation aspects.

There are only a few contributions in literature, where both
perspectives are combined in order to find a trade-off. One par-
ticular example is the goal-oriented holonic system design con-
cept [53], where the strict hierarchical composition of a system
is replaced by holonic system organisation with goals as the
primary coupling point. In general, hybrid SASO architectures
integrate elements that have different scopes w.r.t. the centrality
of their responsibilities, which can be categorized as (i) layered
structures[e.g. 15, 5], (ii) cascaded structures[e.g. 38, 54], and
(iii) hybrid coordination patterns[e.g. 55].

Optimisation in SASO systems: In [22], we analysed the
usage of optimisation techniques within SASO systems for
adaptation planning. We identified 29 different techniques in
51 publications, including probabilistic, combinatorial, evolu-
tionary, stochastic, mathematical, and meta-heuristic optimisa-
tion techniques. The list is exemplary; however, the approaches
target optimisation in centralised systems with only minor at-
tention to decentralised optimisation. Such centralised optimi-
sation comes with the disadvantages of providing the risk of a
single point of failure as well as a potential bottleneck. Further,
it contradicts the nature of autonomous entities. Decentralised
optimisation techniques as required in our targeted system do-
main can overcome these issues.

Autonomous learning in SASO systems: In [56], we com-
pared applied learning techniques in SASO systems. Here, Re-
inforcement Learning (RL) has been identified as most promi-
nent variant, mainly realised as simple learning tasks (e.g., us-
ing Q-Learning) or more sophisticated approaches (e.g., us-
ing Learning Classifier Systems (LCS) [57]). Alternatively,
Multi-agent RL (MARL) is employed to solve problems in
a distributed manner when centralised control becomes infea-
sible [58]. However, all these techniques do not combine
centralised planning with autonomous learning behaviour of
the individual subsystems—and consequently do not focus the
trade-off between optimality and autonomy. For our context,
ML techniques for the self-improvement of coordination de-
cisions of the autonomous subsystems at runtime are highly
relevant. Especially the “Extended Classifier System” (XCS)
variant by Wilson [30] has been widely used for implementing
self-adaptation with runtime learning capabilities[e.g. 59, 60].

Multi-agent reinforcement learning (MARL): Multi-agent
reinforcement learning is a subfield of artificial intelligence and
machine learning that studies a potentially large set of (intelli-
gent) agents coexisting and potentially cooperating in a shared
environment. These agents are often modelled as working col-
laboratively toward a joint final goal. The main aspect of collab-
oration is usually following inspiration from social structures in
natural systems and their interaction, e.g. animal states such as
ants or termites. A second major aspect of the field has its roots
in game theory, especially if learners are assumed to be not fully
cooperative. Technical examples can be found in applications
such as urban and air traffic control [61], multi-robot coordina-
tion [62, 63], distributed sensing [64], and energy distribution
[65].

In MARL, several attempts to the coordination of learning
agents exist. This includes examples such as [66], where an
algorithm for the learning of organisational roles has been pre-
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sented. In particular, the agents in the underlying scenario are
modelled as being heterogeneous and the approach optimises
the mapping of gent capabilities and tasks. In contrast to the
learning problem in this article, their capabilities are less im-
portant and the autonomous decisions of the agent will overrule
the mapping.

An alternative has been presented by Kok et al. [67]. Their
work makes use of so-called coordination graphs, which are
then used to solve the global coordination problem locally
(given that it is possible to decompose the global payoff func-
tion, i.e. to turn it into the sum of local payoff functions). In
[68], an extension has been proposed that infers the coordina-
tion graph online, which results in a transition from independent
learners to coordinated action selection. Besides restrictions as
before and the assumption that all agents are always willing and
able to cooperate., it is hardly applicable to our problem due to
relying on inference rules that are hand-crafted and the discrete
nature of the state variables.

A third example has been presented by De Hauwere et al.
[69]. The authors investigated a solution for mazes with two
robots. The basic idea is to apply a generalised learning au-
tomaton working on the distance to the other robot to learn how
to avoid a collision. This means recognising states that need to
be coordinated. Since the approach itself is generic, it might be
applicable to parts of the learning problem in this article, but the
scope is too restricted in terms of the number of participants and
requires manual intervention to adapt the inputs of the learning
algorithm. There is some work that presented an extension to-
wards several states, where still a selection of states is neces-
sary [70]. In the work by Vrancx et al. [71] an extension to
Coordinating Q-Learning has been proposed. Here, the authors
apply transfer learning concepts on a state basis. This means
that again a focus is on selected states that require coordination
– which is not feasible in advance in our scenario (due to too
many possible states, churn, and potentially unknown partici-
pants and jobs). Further, the underlying agent-centred view to
generalise over varying conditions is not appropriate due to the
missing possibility to distinguish between the concrete other
systems.

More theoretically, Lanctot et al. [72] proposed a MARL-
based metric that they called “joint policy correlation”, which
make use of repetitions of the same scenario with changing ran-
dom influences resulting in different strategies of the agents.
Based on this data, a matrix-based comparison of the the aver-
age rewards of the agents among the different repetitions is cal-
culated. Using a very restricted two-agent laser-tag scenario,
the obtained values against the initial opponent and the other
opponents are aggregated to create a measure, and this measure
describes how far an agent has overfitted to its initial opponent.
Although this is another scope compared to this article’s learn-
ing problem, the metric may serve as an indicator to identify
how much an agent overfits the behaviour of other agents.

Anytime learning: To investigate the existing literature re-
garding anytime learning in SASO systems, we studied the pub-
lications of eleven journals and conferences. We identified 55
approaches; 33 learn in a centralised fashion, 22 apply dis-
tributed learning techniques. The papers show a diverse set

of used optimisation approaches. The most common ones in-
clude evolutionary (16 papers), reinforcement learning (12 pa-
pers), heuristics (four papers), greedy (three papers), and tabu
search (two papers) techniques. As one focus for the SFI is to
increase the robustness through flexible plans and a fast adapta-
tion to changes, our proposed approach needs to rely on anytime
learning, especially, to handle periodical and event data as well
as adjust the optimisation technique. The choice of the most
suitable technique is part of our future work.

Incentivisation: At the core of an exchange economy with
asymmetric information and/or limited availability of entities,
incentives are used as a mechanism to guarantee participation
[73]. As for the SFI scenario, some participants have strong
benefits while others have fewer benefits (maybe even face a
loss in their utility function), incentivisation is an important
topic. In literature, different approaches to counter the nega-
tive effects (such as decreased willingness to participate or un-
fairness) are known, including compensation based on (crypt-
)money, trust values, scheduling priorities, or reputation (for
corresponding overviews see, e.g., [74, 75]). A particular char-
acteristic that is of special importance in the coordination of SFI
is the concept of delayed compensation based on incentives.
Examples for such a system include a memory of investments
(e.g., realised as trust values [76]) and the subsequent utilisa-
tion of these incentives [77]. Based on our work on fairness
in platooning [21], we plan to analyse existing concepts for es-
tablishing fairness and computational trust as part of our future
work.

Uncertainty: SASO systems often act in imperfect, dynamic
environments. Hence, they have to incorporate the factors for
uncertainty within the decision-making process. In the SFI sce-
nario, uncertainty inherently arises from the fact the orders of
customers might change or changes in the environment (e.g.,
accidents or traffic congestion) might not be anticipated. The
SASO literature provides several approaches to address the un-
certainty, which we shortly summarise in the following. For
taming uncertainty, different requirement modelling languages
and modelling approaches exist, for example FLAGS [78],
CARE [79], RELAX [80], LOREM [81] or [82]. Another re-
search stream focuses on the reasoning of adaptation under un-
certainty. POISED [83] supports reasoning on uncertainty for
the adaptation decision by evaluating the consequences of un-
certainty using possibility theory; Moreno et al. [84] focuses
on applying Markov decision processes for that purpose. Re-
cently, Moreno et al. presented tactics to reduce uncertainty
coming from simplified design assumptions, noise, model drift,
context issues, human-in-the-loop, or decentralization [85].
Gerostathopoulos et al. present an approach to handle uncer-
tainty resulting from noisy system outputs using Bayesian Op-
timisation with Gaussian Processes [86]. Kinneer proposes an
approach for planning in unexpected situations by using prior
planning knowledge based on genetic programming and reusing
existing plans [87]. SimCA* provides a control-theoretic ap-
proach that provides guarantees for uncertainty related to sys-
tem parameters, component interactions, system requirements,
and environmental uncertainty [88]. Additionally, some authors
focus on monitoring under uncertainty, [e.g. 89, 90].
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5.2. State-of-the-Art in Fields Relevant for the SFI Technology

Current developments in autonomous driving and success-
ful platforms for mobility services resulted in the prediction
that—within the next decade—travellers will make increasing
use of autonomous taxi services (also called ’robo-taxis’). Main
drives for such a development are ubiquitous accessibility, easy
utilisation and affordability [91, 92]. Several research efforts
have been dedicated to the subsequent implications and busi-
ness models for operating a fleet of such autonomous taxis [92].
The underlying idea is in most cases to establish a third-party
organisation to respond to the travel demand of the entire urban
population or a community (such as the SFI proposed above).
The main utilisation pattern of such shared autonomous vehi-
cles (SAVs) is assumed to be done by a closed group of mem-
bers or centrally organised by a company for their employees,
which in both cases neglects openness of the system and re-
quires full pre-subscription.

Corresponding case studies and concepts for business models
based on SAVs are, for instance, driven by large car manufac-
turers. Some of them try to establish themselves as the operator
of the underlying infrastructure with the idea to earn money for
provided services on a per kilometre or per trip basis [93]. The
difference to the work presented in this article lies in a very
abstract simulation environment and the limited scope, i.e., the
focus on fleets operated by single vendors.

Current work mainly focuses on the design of the fleets and
the operator, i.e., to establish the underlying basic operational
characteristics for an upstream planning process. This includes
aspects such as the fleet size, fleet specifications, relocation
strategies, and the service area of the fleet [94].

A second interesting aspect of research on SFI-related top-
ics is potential acceptance. Recently, we have seen several ex-
perimental studies on the acceptance of using AVs in general
(see, e.g., [95]). Of particular interest here are those studies
that analyse possible acceptability of SAVs. Examples include
[96, 97] and [98]. The authors of these studies tried to esti-
mate a possible market penetration rate based on the prefer-
ences queried by possible users. These are mostly static prefer-
ences without taking traffic conditions or dynamic alternatives
into consideration. Due to the preliminary and abstract charac-
ter of the AT service (since it is an envisioned future and not an
available system), users tended to be sceptic in the first place.
Consequently, researchers focused on first attempts to simulate
prototypical behaviour of such systems to gain first insights.
The most prominent approach is to rely on so-called “activity-
based” multi-agent simulations, see [99] as an example. Based
on a similar setting, [12] presented an extension to these sim-
ulations that are more interactive and demand-oriented. An al-
ternative solution has been proposed in [100]. Here, the authors
focus on investigations of the previously mentioned aspects of
fleet size and optimisation strategies. Based on a case study in
Austin, Texas, [101] increased the decision freedom of forming
fleets.

All the studies and experiments mentioned in the previous
paragraph rely on simulations using MATSim [39]. This is a
major limitation since the abstractions and generalisations used

in MATSim model the real-world at a macroscopic level. In
particular, all real-world aspects and effects (e.g., real topol-
ogy, complex phase systems, car follow and lane change mod-
els, or real-world traffic demands with realistic generation pat-
terns) simulated by sophisticated traffic simulator such as Aim-
sun [42] are neglected.

Although this renders the transferability of the insights lim-
ited, recent developments show that the impact of user pref-
erences on SAV usage can be beneficial. For instance, [102]
showed—again based on MATSim simulations—that incorpo-
rating user preferences in scoring functions for SAV operation
can serve as a basis for optimisation routines. In a particular
case, the authors applied a co-evolutionary approach to opti-
mise agent plans. In order to provide a realistic basis for the
scenario, existing taxis are replaced by SAVs, and the service
is assumed to be ubiquitously available (as a replacement). The
simulation is limited again since it neglects the impact of wait-
ing times. As an alternative, [103] modelled socio-demographic
attributes such as age and income as key drivers for a discrete
selection approach between available modes of transport, in-
cluding SAVs. Since their simulation models real trip-taking
activity—meaning all available modes at the time of a request—
this is neglected for SAV mode (instead of using the conven-
tional taxi mode attributes as in the study before).

A closely related field of research is the coordination of pla-
tooning, which is described as a cooperative driving technology
where vehicles that are (partially) automated drive in close for-
mation with gaps of three to ten meters [104]. Drivers do not
have to control the forming of platoons as this is done auto-
matically. The decision which platoon a vehicle should join
relies on various parameters, for example, vehicle characteris-
tics, planned velocity, or for how long the vehicles of a platoon
can travel together, i.e., the overlap in their routes. Recently, re-
searchers begin increasingly to work on the efficient assignment
of vehicles to platoons; however, obeying individual constraints
of drivers have been left out of scope. In [105], we present our
concept for a platooning coordination approach. In contrast to
existing approaches (see the overview in [106]), we integrate
individual preferences of drivers, focus on multi-objective so-
lutions, and provide individualised decisions which platoon to
join. As platooning coordination represents a multi-level opti-
misation problem with a many- (different objectives from differ-
ent vehicles) and multi-objective (integration of various global
objectives) solution space, we think that approaches from this
area might be transferred to the SFI.

Summarising the state-of-the-art in the field, we can state the
following: Since autonomous driving is not ubiquitously avail-
able by now, research focused on simulations. By now, only
abstract (mostly MATSim-based) studies are available. Studies
regarding the preferences and the possible acceptability of SAV
taxi services show that there is a possible market. However, the
focus is on fleets operated by large companies (following the
current conventional taxi model). A sharing model of private
owners as envisioned in this article has not been investigated so
far. However, insights into the current studies can be re-used in
experiments.
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6. Conclusion

This article introduced the SFI as a hybrid planning and
optimisation framework for establishing autonomous taxi ser-
vices in urban areas based on private-owned dynamically avail-
able autonomous cars. We explained that neither a fully cen-
tralised nor a fully distributed decision process will result in
stable, optimised, and reliable behaviour. Consequently, we
presented our vision of a system that combines abstract plan-
ning with decision freedoms respecting the autonomy of the
individual participants—this system controls the behaviour by
steering cost and compensation schemes that are effected as re-
sponse to state estimations combining current observations and
uncertainty-enriched forecasts of upcoming developments.

We proposed several research directions necessary to inves-
tigate the SFI system, combining efforts of four directions: a)
anytime optimisation heuristics responsible for planning gener-
alised role schemes with decision freedom of how to customise
them as centralised dynamic service that continuously updates
the schemes and steers the behaviour using commission fees
and compensation payoffs, b) autonomous local learning tech-
niques that continuously self-improve the behaviour of an in-
dividual car, c) awareness techniques for forecasting system
states and quantifying the inherent uncertainty as well as an
anomaly or novelty detection to trigger system and behaviour
re-organisation, and d) simulation-based testbed that reflects
real-world characteristics of the traffic conditions and dynam-
ics. Our current and future work focuses on developing novel
techniques and solutions to handle these challenges.
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multi-agent systems, in: Proceedings of the 20th Belgian-Netherlands
Conference on Artificial Intelligence, 2009, pp. 83–90.

[70] Y.-M. De Hauwere, P. Vrancx, A. Nowé, Learning multi-agent state
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