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Abstract—Self-adaptation is crucial for cyber-physical systems
(CPS) to meet their requirements in environments characterized
by complexity and uncertainty. As many situations that CPS
encounter at runtime are not foreseeable at design time, (online)
learning approaches are attractive for such systems. Learning
classifier systems (LCS) are a promising learning approach for
CPS thanks to their rather low computational complexity. They
operate on a set of rules that describe potential adaptation
behavior. So far, specifying rules for a learning classifier system
is a tedious task that requires expert knowledge. In this paper, we
present Rango — an intuitive rule language for learning classifier
systems — to overcome this challenge. Compared to existing
approaches, Rango has a strong focus on CPS and provides
a large variety of corresponding keywords. In addition, Rango
rules are automatically transferred into a representation that is
usable in a learning classifier system without any modifications.
Rango therefore empowers system administrators to formulate
rules and, hence, leverage an online learning approach for their
use case without having prior experience with learning classifier
systems. We evaluate Rango extensively with (i) a complexity
analysis of parsing and rule evaluation, (ii) a usefulness study
which shows that Rango facilitates both the writing of rules and
the understanding of LCS output and (iii) a usability study,
which proves that basic programming knowledge is sufficient
to understand and formulate Rango rules.

Index Terms—learning classifier systems, adaptation, cyber-
physical systems, rule language, context-free grammar

I. INTRODUCTION

In recent years, cyber-physical systems (CPS) found their
path into areas such as automotive systems, remote patient
monitoring, or smart manufacturing. CPS are complex to
develop and operate as they typically act in environments that
involve uncertainty; hence CPS require robustness to failures
and threats [1], so self-adaptation [2] is essential for CPS to
cope with ever-changing environments [3].

In CPS, learning, i.e., improving the adaptation behavior
based on past experience, is especially important for two
reasons. First, environmental uncertainty leads to situations
during runtime that were not predictable at design time [4];
consequently, this increases the complexity for system devel-
opment as the system has to find ways, i.e., adaptations, to
cope with the changes. Second, the effectiveness of certain

adaptive behavior may strongly depend on the current situa-
tion [5]. Avoiding an obstacle by quickly changing the lane,
for instance, is only effective for an autonomous car if the
road conditions and the traffic allow such a maneuver.

While a wide variety of (online) learning techniques ex-
ist [6], many of them are rather inapplicable in the CPS domain
due to the following reasons. As CPS often rely on processors
with comparably low computing power (e.g., electronic con-
trol units (ECUs) in cars), computationally intensive learning
approaches are not feasible. Furthermore, learning in a CPS
use case is often particularly complex due to the inherent
uncertainty and the large variety of interacting components
in such systems. In addition, many use cases require real-time
decision making. Due to these requirements, learning classifier
systems (LCS) [7]–[9] are frequently used for learning in
CPS (e.g., in [10]–[13]). LCS operate on a set of rules that
describe possible adaptations. Based on the reward, i.e., the
effectiveness of an action that was observed after applying
a certain rule, LCS learn from past experience and identify
suitable rules for future adaptations.

Although LCS are well-applicable in the CPS domain, an
important challenge remains: The rule set must be formulated.
Usually, LCS use bit strings to codify rules [8], [9]. As an
overly simplistic example, “11→1” is a possible representation
of “IF robotFacesObstacle AND robotInMotion THEN brake”.
Analogously, another rule would be “01→0”, which would be
equal to “IF !robotFacesObstacle AND robotInMotion THEN
!brake”. Using such bit strings for rule representation in CPS
is, however, not advisable in practice for two reasons. First,
the complexity of typical use cases would lead to lengthy
bit strings that are unreadable and — more importantly —
impossible to write by humans. Second, such bit strings
cannot express certain conditions and actions that require, e.g.,
numerical context variables.

To overcome those practical issues, we introduce Rango—
a generic and flexible rule language — in this paper. Rango
enables system administrators to systematically and formally
create rules for LCS in an intuitive way. It offers maximum
flexibility to define abstract and generic rules independent of a



specific use case as well as application-specific rules, if these
are desired. Rango has two major advantages for specifying
adaptation behavior in comparison to existing languages such
as Stitch [14] and Ctrl-F [15]. First, it includes a large set
of pre-defined CPS keywords such as Importance, which
models whether a certain application is safety-critical or not.
These CPS-specific keywords are re-usable for many CPS use
cases. They free the system administrator from a considerable
part of the overall coding effort. The keywords additionally
already model mixed-criticality, i.e., the co-existence of safety-
critical and less critical tasks in one system, which is crucial
in CPS like autonomous cars [16]. Second, Rango is well-
integrated with the learning component. The rules specified in
Rango are automatically transferred into a binary representa-
tion that is usable by a LCS without any modifications. As
Rango allows system administrators to easily export rules that
were learned by the CPS during runtime into a human-readable
format, it furthermore paves the way towards explainable
artificial intelligence (XAI) [17], [18].

We evaluate Rango extensively in a threefold study. First,
we perform a complexity analysis of parsing and rule eval-
uation to determine Rango’s overhead. Second, we conduct
a usefulness study, which shows that Rango facilitates both
writing rules and understanding LCS output. Third, we con-
duct a comprehensive usability study, which shows that even
non-experts are easily able to understand and create rules
in Rango. In the remainder of this paper, we first introduce
the fundamentals of self-adaptation with LCS (Section II).
Afterwards, we review related work (Section III), introduce
Rango in all detail (Section IV), evaluate Rango (Section V),
and summarize the results in a conclusion (Section VI).

II. SELF-ADAPTATION WITH LCS

Self-adaptation is crucial for mixed-critical CPS to cope
with the inherent complexity of such systems. The MAPE-
K feedback loop [19] is a suitable architecture to imple-
ment the desired self-adaptation capabilities in CPS. It con-
sists of components for (i) Monitoring system and environ-
ment, (ii) Analyzing monitoring data for required adaptations,
(iii) Planning adaptations, and (iv) Executing them. In addi-
tion, the four components share a Knowledge base.

The analyzing and planning component of the feedback
loop can contain a LCS. LCS-based approaches are popular in
organic computing (cf. [11], [20]) and they have been applied
several times in the CPS domain [10]–[13]. In comparison
to other online learning approaches, LCS are less computa-
tionally complex. Therefore, training can be performed on
devices with low computational power and decisions can be
made in real time, which are both essential requirements in the
CPS domain. LCS use a set of rules that represent potential
adaptations. Based on the reward, i.e., the effectiveness of an
action, that was observed after applying a certain rule, LCS
learn and select suitable rules for future adaptations.

Figure 1 shows a typical LCS-based feedback loop. The
monitor receives context information about the state of the
mixed-critical CPS, pre-processes it, and forwards relevant
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Fig. 1. Typical architecture of an LCS-based feedback loop. The analyzer’s
rule engine adds rules that are applicable in the current context to the match
set. The planner’s match engine selects the most promising rule for execution.
A rule generation engine may evolve rules at runtime. We propose Rango,
which is a language that allows system administrators to formulate the rule
set in a human-readable format. These rules are parsed and automatically
integrated into the learning component. Rango also offers a rule writer, which
exports rules from the learning component into a human-readable format.

information to the analyzer. The analyzer contains the rule
engine, which is responsible for rule evaluation and reward
calculation. It compares the current system condition to the
condition clauses of the rule set stored in the knowledge
component. All rules that are currently applicable, i.e., all
rules where all conditions evaluate to true, are included in
the match set. The analyzer additionally updates the rule set
with the reward that was calculated by it. The planner selects
the rule from the match set that is expected to lead to the
highest reward. Finally, the executor controls the application
of the rules. An LCS-based feedback loop may additionally
contain a rule generation engine, which evolves the rule set
automatically at runtime, e.g., with genetic algorithms [8], [9].

While this fundamental architecture is well-established, an
important challenge remains: The rule set must be formulated.
Usually, LCS use bit strings to codify rules [8], [9]. For
instance, “11→1” could be a representation of “IF robot-
FacesObstacle AND robotInMotion THEN brake”. Such bit
strings are, however, not suitable for rule representation as
(i) they are cumbersome to read and write and (ii) they
cannot express certain conditions and actions that, e.g., include
numerical context variables. To overcome these shortcomings,
we introduce Rango — a generic and flexible rule syntax — in
this paper. As depicted in Figure 1, system administrators store
rules written in Rango in a .rul file. This file is automatically
parsed into an internal binary representation that can be used
as a rule set of the feedback loop without any modifications. In
addition, our approach improves traceability and explainability
of learning as it offers the option to export a rule set modified
by learning to a .rulx file in Rango’s human-readable form.

III. RELATED WORK

In an insightful overview [6], D’Angelo et al. compare
which learning techniques are applied in adaptive systems.



Approaches that rely on Reinforcement Learning (RL) are
dominantly applied to realize simple learning tasks (e.g., with
Q-Learning) as well as sophisticated ones (e.g., with LCS).

Learning classifier systems. In this paper, we focus on
LCS because those and variants — such as the Extended
Classifier System (XCS) [21] by Wilson [22] or XCS for
real-valued input spaces (XCSR) [23] — have been widely
used for implementing adaptive behavior with runtime learning
capabilities in various domains. For instance, they have been
applied in typical CPS use cases such as self-adaptive traffic
management [10], [11], autonomous parameter adjustment
of data communication protocols [12], or Industry 4.0 [13].
Beyond the domain of CPS, Rosenbauer et al. [24] applied
XCS for function approximation (XCFS) for automated test
case prioritization and Stein et al. targeted a smart cameras
application [25]. However, to the best of the authors’ knowl-
edge, none of the approaches focuses on supporting the system
administrator in the process of the rule set generation. Still, the
applied learning principles can be combined with our approach
to learn new rules or optimize existing ones.

Adaptation languages. Several requirement modelling lan-
guages and modelling approaches such as FLAGS [26],
CARE [27], RELAX [28], LOREM [29] or [30] exist. The main
purpose of such languages is the definition of requirements at
design time. At runtime, the resulting models can be used
as a knowledge base to support the reasoning for adaptation.
Similarly, languages such as Stitch [14] and Ctrl-F [15] focus
on the definition of adaptation behavior. In a previous work, we
use the structural specification language Clafer [31] to model
adaptation behavior and UML to model the target system in our
REACT framework [32] and its extension REACT-ION [33].
In another previous work [34], we focus on a clear separation
of the adaptation decision logic and the rules. We present
an approach where an initial rule set can be defined in a
spreadsheet. In comparison to these approaches for specifying
adaptation behavior, Rango has two key strengths. First, Rango
is specifically designed for the usage in CPS. It includes, for
instance, a large variety of CPS-specific keywords. Second,
Rango is well-integrated with a learning mechanism. Related
languages do not integrate mechanisms to learn or adjust the
models, i.e., for representing new adaptation rules.

Reasoning of adaptation under uncertainty. Another
research stream focuses on the reasoning of adaptation under
uncertainty [35]–[39], which is typical for CPS. SimCA* [40]
provides a control-theoretic approach that offers guarantees
for uncertainty related to system parameters, component inter-
actions, system requirements, and environmental uncertainty.
Those works do not focus on expressing the uncertainty neither
as part of a modelling/programming language nor as rules but
instead apply statistical approaches such as Markov decision
processes or Bayesian optimization to reflect uncertainty. In
addition, those approaches do not integrate learning.

In summary, this paper contributes to the state of the art
by introducing the rule language Rango. Rango builds upon
existing research on LCS and offers an intuitive way to specify
an initial rule set, which was cumbersome for system adminis-
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Fig. 2. Running example from the automotive domain. A car contains several
ECUs that execute safety-critical and non-critical applications. After the driver
activates the navigation system, the corresponding ECU has to migrate an
application to another ECU due to a lack of processing power. We show how
Rango can be used to formulate this desired adaptation behavior.

trators so far. In contrast to prominent languages for adaptation
behavior such as Stitch or Ctrl-F, Rango is characterized by a
strong focus on CPS and the automatic integration of learning.

IV. RANGO — A RULE LANGUAGE FOR LCS-BASED
ADAPTATION IN CPS

In this section, we describe Rango’s features by applying it
to a simplified automotive use case. After presenting the use
case, we explain Rango’s syntax, its CPS-specific features, its
rule files, and how those rules are evaluated.

A. Running Example

Throughout the remainder of this paper, we refer to a
running example from the automotive domain. The system
model implied by this CPS use case is shown in Figure 2.
A car has several electronic control units (ECUs), i.e., pro-
cessor nodes with a certain computational power. Each ECU
can be responsible for various car functions such as brake
control, cruise control, or steering. Apart from those safety-
related functions, the ECUs also control comfort and assistance
functions including navigation or infotainment. We refer to
these functions as applications in the following. Each appli-
cation has predefined requirements such as timing constraints
which should be complied to at all time. The communication
among ECUs is realized via a typical vehicular communication
channel (e.g., CAN, time-triggered ethernet, or FlexRax).

The degree to which a component (i.e., a node, an applica-
tion, or a communication channel) meets its requirements is
called health. The health value is in the range of −infinity
to 1, where 1 means completely healthy and all values less
than or equal to 0 mean unhealthy. This abstraction makes a
flexible mapping of different requirements to a single numeric
value possible. For instance, if an application is starting to
miss deadlines more frequently, the application’s health value
declines. Similarly, a node may become unhealthy, e.g., if the
processor load exceeds 80%. In this case, the node might
not be able to cope with the computational demand of its
applications in peak times.



During the journey, the number of active and required
applications in the car varies. For instance, the driver may
start the navigation system due to a road closure. This po-
tentially leads to an ECU overload if the ECU on which
the navigation application is started does not have sufficient
computational power to cope with the increased demand.
As a consequence, the applications on this ECU may fail
to meet their requirements. Thus, the local ECU and the
corresponding applications become unhealthy. The overall goal
of self-adaptation in this use case is to maintain a good health
value for each component. To achieve this, each ECU has its
own LCS-based feedback loop. If the communication channel
within the system is still healthy, a relocation of the unhealthy
application to a healthy ECU is a suitable adaptation in the
above scenario. In the following, we show how we can specify
this adaptation behavior easily with Rango.

B. Rango Syntax

The complete Rango grammar describing the syntax of the
language in Extended Backus-Naur Form (EBNF) is available
on GitHub (https://github.com/MelFeist/Rango). The adapta-
tion behavior that is desirable in the example use case — a
relocation of an unhealthy application — can be specified with
the following rule in Rango:

If relocationMightBeUseful
Then relocateLocalUnhealthyApp

In general, a rule consists of a condition and an action.
Conditions and actions can either be specified directly or
defined and referenced by name as shown in the Rango
code snippet above. Here, the name of the condition is
relocationMightBeUseful and the action’s name is
relocateLocalUnhealthyApp. The reference by name
allows system administrators to use an action or condition
multiple times in a rule set without having to rewrite it.
In addition, this increases the efficiency of rule evaluation
within the feedback loop, since a condition/action that is used
multiple times only needs to be evaluated once.

We need to define a condition or action to be
able to reference it by name. We first define the
relocationMightBeUseful condition. This condition
checks whether unhealthy applications are running on the local
ECU while (i) the communication is still healthy and (ii) there
are other suitable ECUs in the car to which the unhealthy
applications can be migrated. In Rango, we formulate this
condition as follows:

DefineCondition relocationMightBeUseful :
Cardinal (localUnhealthyApps) > 0 And
Cardinal (localUnhealthyNodes) > 0 And
Cardinal (nonLocalSuitableNodes) > 0 And
Cardinal (localUnhealthyComms) = 0

This example shows that a condition consists of conjunc-
tive links (And) of sub-conditions. Sub-conditions always
operate on sets. A set can contain applications, nodes, or
communication channels. The Cardinal keyword delivers

the cardinality of a set. In addition to their cardinality, the
maximum, minimum, or average value of one of the set’s
attributes can be used for comparison. In the code snippet
above, the cardinality of four sets (localUnhealthyApps,
localUnhealthyNodes, nonLocalSuitableNodes,
localUnhealthyComms) is used to specify sub-conditions.
The overall condition relocationMightBeUseful there-
fore evaluates to true if the first three sets are non-empty while
the last one is empty.

Rango offers two options for the definition of sets. First,
sets can be defined by directly referencing applications, nodes,
or communication channels by name. Second, sets can be
defined via queries, e.g., by selecting all applications with a
health value smaller than 0. Defining sets via queries makes it
possible to keep the rules independent of specific applications.
Instead, Rango constructs these sets dynamically based on
the respective query. In a query, the attributes of a node,
application, or communication channel can be compared to
arbitrary values or their maximum/minimum value can be
requested. Two exemplary set definitions with queries are:

DefineSet localUnhealthyApps :
App Local Where Health <= 0

DefineSet nonLocalSuitableNodes :
Node NonLocal Where
Capacity >= Demand (localUnhealthyApps),
Health Max

Here, the first set (localUnhealthyApps) includes all
local unhealthy applications, i.e., those with health values of
0 and below. The second set (nonLocalSuitableNodes)
contains the most healthy non-local nodes with sufficient re-
maining computing power1. Similar to conditions and actions,
a set can be used several times by referencing to its name. A
set that is used multiple times is only constructed once per
rule evaluation period.

So far, we have introduced all of Rango’s features that are
required to specify the condition. Now, we proceed with the
definition of the action (relocateLocalUnhealtyApp):

DefineAction relocatelocalUnhealthyApp :
Relocate localUnhealthyApps
To nonLocalSuitableNodes

We observe that this action definition re-uses the sets
that we have already defined above. An action can be
applied either to all elements of the set or to one element.
This is realized by either using or omitting the All
keyword. Without the All keyword, only the first element
of the localUnhealthyApps set is moved to the first
element of the nonLocalSuitableNodes set. If we
use the All keyword before localUnhealthyApps
(Relocate All localUnhealthyApps...), all

1If there is more than one element in the localUnhealthyApps set,
the demand of the first application of this set is used for comparison. It is
also possible to use the demand of all applications in the set with the All
keyword.



elements of the application set will be moved to the
first element of the nonLocalSuitableNodes set.
If we use the All keyword before both sets (... To
All nonLocalSuitableNodes), all elements of the
application set will be moved to the elements of the node
set according to the following scheme: the i-th element of
the application set is migrated to the (i mod |nodeset|)-th
element of the node set.

C. CPS-Specific Elements in Rango

While it is possible to apply Rango in arbitrary use cases,
the language includes four features that are particularly useful
in CPS development: CPS-specific components, attributes,
adaptation actions, and scopes (cf. Table I2). We demonstrate
each of these features with the following code snippet:

DefineSet leastImportantApps:
App System Where Importance Min

If systemOverloaded
Then Stop leastImportantApps

This code snippet specifies a rule that stops the least critical
application in the CPS in case of an overload3.

We already introduced queries in the previous section to
group several components dynamically into sets. To achieve
the desired behavior, we must first define a set that contains
the least critical application(s). Therefore, Rango includes
keywords that automatically address typical components of a
CPS (applications, nodes, and communication channels). In
the code snippet, we use the keyword App to consider all
applications. Furthermore, attributes of the components such
as their health are used for comparison or maximum/minimum
determination. Rango offers system administrators 43 pre-
defined CPS-specific attributes that are ready to use.

In the above code snippet, we use Rango’s CPS-specific
attribute “importance” (i.e., the keyword Importance). This
keyword allows system administrators to consider mixed-
criticality by making it possible to specify rules that realize
a dynamic prioritization of critical tasks, e.g., in overload
situations as in the above code snippet. In the provided
example the prioritization is achieved by terminating (Stop)
the least important and thus least critical application in the
entire system. This is only one way to solve the problem.
There might be other, even better, adaptation actions to resolve
the overload. Since we strive for a maximum of flexibility
and opportunities for adaptation to be able to learn the best
actions in different situations, Rango includes 18 keywords
that represent adaptation actions in CPS such as migrating
applications (Relocate).

Finally, we introduce different scopes in Rango. In practice,
multiple CPS may cooperate and interact with each other
over a network to achieve their goals. Such a network of

2Please refer to GitHub (https://github.com/MelFeist/Rango) for the entire
list of available CPS specifics.

3For readability reasons, we omit the definition of the
systemOverloaded condition in the code snippet.

TABLE I
CPS SPECIFIC COMPONENTS, ATTRIBUTES, ADAPTATION ACTIONS AND

SCOPES INCLUDED IN RANGO

CPS-
specific
element

Keyword Description

Components
App Applications such as brake control
Node Processing nodes such as ECUs
Comm Communication channels such as CAN

Attributes

Importance
Describes in [0,∞) the criticality of an
application

Health
Describes in (-∞,1] whether a compo-
nent meets its requirements

Period
Period in which an application is exe-
cuted

Scheduling
Scheduling policy of a node or commu-
nication channel

Capacity
Remaining computational power of a
node or communication bandwidth of
a communication channel

... 38 further CPS-specific attributes

Actions

Stop Terminates an application
Relocate Migrates an application to another node
TunePeriod Changes the period of an application
SetPriority Sets the priority of an application

SetScheduling
Changes the scheduling policy of a
node or communication channel

... 13 further CPS-specific actions

Scopes

Local All components local to a certain node
System All components in a certain CPS
Global All components in the entire CPN

NonLocal
All components not local to a certain
node

NonSystem
All components not belonging to a cer-
tain CPS

... 4 further scopes

CPS is often referred to as a cyber-physical network (CPN).
For example, in a platooning [41] scenario, in which several
autonomous vehicles drive in a convoy with small inter-vehicle
distances, those vehicles need to coordinate their inter-vehicle
gaps via IEEE 802.11p communication. The overarching CPN
would therefore consist of multiple CPS (the cars). Each CPS
itself includes several processing nodes (i.e., ECUs), which
each have their own feedback loop for decision making. In
such systems-of-systems, scopes such as “in the current CPS”,
“on the current processing node”, or “somewhere in the whole
CPN” play an important role in how system administrators
would intuitively describe the adaptation behavior that they
wish to model. For instance, a rule may migrate all applica-
tions that are running on an ECU to another ECU in the same
car and not to an arbitrary ECU in the whole CPN. Rango
offers multiple scopes with corresponding keywords for the
specification of such rules: (i) Global refers to all components
in the entire CPN (e.g., all applications within the whole
platooning scenario), (ii) System refers to all components of
the corresponding CPS (e.g., all applications running in a
single car) (iii) Local refers to all components on the same
node as the feedback loop (e.g., all applications running on the
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/* ConfigurationDirectives */
EvaluationPeriod 0.1

/* Rule Set */
/* Named Sets */
DefineSet localUnhealtyApps: App Local Where Health <= 0
DefineSet leastImportantApps: App Global Where Importance Min

/* Named Conditions */
DefineCondition localUnhealtyAppsOnNode: 
Cardinal (localUnhealthyApps) >= 0 

/* Named Actions */
DefineAction stopLeastImportantApp:
StopApp leastImportantApps

/* Rules */
If localUnhealtyAppsOnNode Then stopLeastImportantApp

1

2

Rule Container

Fig. 3. Rule file structure .rul

same ECU). Based on these basic scopes, several composite
scopes for the rules can be derived, e.g., NonLocal refers
to all components that are not located on the local node,
and NonSystem refers to all components not belonging to the
CPS of the local nodes. For example, a component like an
application is Local to an ECU if the functionality is executed
on this ECU. All applications not running on this node can be
referred to as NonLocal and all applications not belonging to
the CPS can be referenced by NonSystem.

D. Structure of Rango Rule Files

System administrators store Rango rules in .rul files. This
way, system administrators or domain experts can write the
initial rule set or updates of rules without knowledge on LCS
or implementation of CPS. As depicted in Figure 3, such files
consist of two parts: the configuration part and the rule set. In
the configuration part, various configuration directives can be
defined. System administrators can specify settings for the rule
evaluation times (e.g. EvaluationPeriod), action execu-
tion, learning parameters, and reward calculation parameters.
The second part of the file — the rule set — consists of
all sets, conditions, actions, and rules. Any sequence of sets,
conditions, actions, and rules is valid as long as there are no
forward references (single pass rule parser).

Furthermore, our approach improves traceability and ex-
plainability of learning as it allows to export rule sets into
a human-readable format after the LCS performed online
learning. Such modified rule sets are stored in .rulx files.
Files in this format starts with a comment that states which
LCS modified the rule set. The remainder is structured in
the same way as a .rul file (cf. Figure 3). However, each
rule is now followed by the corresponding Reward and the
Experience. The reward is a real number that expresses
the benefit of the rule execution for the system goal and the
experience value indicates how often a rule was executed.
Such a modified rule file in the .rulx format can also be
re-parsed in the internal representation and, hence, be re-used
as an initial rule set for adaptation. This makes it possible
to benefit from previous learning, e.g., performed by another
LCS in a similar environment.

E. Rule Evaluation
Rules can basically be evaluated either time or event-driven.

In the event-driven evaluation, the rule evaluation takes place
exactly when an attribute value of a component (i.e. health,
demand, ...) changes. In the case of time-driven evaluation, the
rule set is evaluated periodically at fixed time intervals. In our
implementation the rules are evaluated time-driven, because
firstly this fits perfectly the periodic evaluation structure of
LCS and secondly the evaluation period is usually lower than
the change frequency of a large number of attributes. There-
fore, all rules are evaluated periodically with a definable period
p and the associated conditions and actions are determined.

V. EVALUATION

We evaluate Rango in three experiments. First, we assess the
memory and computational overhead of Rango for rule sets
of different sizes (Section V-A). Second, we consult five LCS
experts and let them evaluate the usefulness of Rango, i.e.,
whether Rango has a practical worth (Section V-B). Third, we
evaluate Rango’s usability, i.e., whether it is easy to understand
and writes rules using Rango without extensive training, in a
study with 37 participants, mostly without experience in LCS
(Section V-C). Section V-D discusses threats to validity.

A. Experiment 1: Performance Evaluation
Using Rango instead of bit strings to formulate rules in-

troduces an overhead in terms of memory usage and compu-
tational complexity. In the first experiment, we evaluate this
overhead both theoretically and in real-world measurements.
We answer three research questions with this experiment:

RQ1: How much memory does Rango use?
RQ2: How computationally complex is the parsing?
RQ3: How computationally complex is the rule evaluation

at runtime?
1) Memory Usage (RQ1): The rule set is parsed into an

internal data structure that stores four tables: (i) rules table,
(ii) conditions table, (iii) actions table, and (iv) sets table.
If an action, condition, or set is referenced by name, the
respective element is stored only once in the table and can
be referenced from elements in the other tables. Thus, the
memory requirement M is linear to the number of rules nrules,
conditions nconditions, actions nactions, and sets nsets of the
rule set. The memory required for a condition is linear to the
number of its sub-conditions (O(nconditionmaxSub

)). Similarly,
the memory required for a set is linear to the number of query
clauses (O(nsetmaxClauses

)) describing the set. The overall
memory usage M can therefore be described as:

M = O(nrules + nconditions · nconditionmaxSub
+

nactions + nsets · nsetmaxClauses
) (1)

In practice, an exemplary rule set with 10 rules and respective
6 conditions with a maximum of 2 sub-conditions and 5
actions using 7 sets with a maximum of 2 query elements
needs 1083 bytes in a 32 bit system and 601 bytes in a 16 bit
system. We therefore conclude that Rango leads to negligible
memory overhead that is even feasible for microcontrollers.



2) Parsing complexity (RQ2): The Rango parser transfers
the rule set written by the system administrator into the
aforementioned internal data structure. This leads to a certain
delay on system startup. After that, the system works on
the binary data structure only. As the syntactic definition of
Rango bases on a context-free LL(1)-grammar, the parsing
complexity is O(n). We measured the parsing complexity in
practice on an Intel 11th Gen Core i7-11700 with 2.5GHz
and 64GB RAM for rule files of different sizes. Even the
largest files that contain around 100 rules lead to average
parsing times of less than 3ms. On low-performance systems,
an external parser on a more powerful machine could transfer
the rule set into the binary representation if parsing becomes
too time-consuming. This representation can then be loaded
to the target system.

3) Evaluation complexity (RQ3): At runtime, rules have to
be evaluated, i.e., it has to be checked whether they apply to
the current context. The evaluation of each rule follows three
steps: (i) determining the condition and action that belong to
the rule, (ii) checking whether conditions are fulfilled, and
(iii) calculating each required set. Since condition and action
can be referenced directly from a rule in the rule table, the
complexity of the first step (C(i)) is within O(1).

To check whether a condition is fulfilled, the given set
property (cardinality, average, minimum, or maximum ele-
ment) must be checked for each set of the condition. With
the maximum number of sets nconditionmaxSets

in a condition
and the maximum number of members nsetmaxMember

in a set,
the worst-case complexity of the second step (C(ii)) is:

C(ii) = O(nconditionmaxSets
· nsetmaxMember

) (2)

To calculate a set (step 3), we need to determine for each
component (applications, nodes, communication channels) if
they are a member of the set. Rango offers two options for
the definition of sets. First, sets can be defined by directly
referencing members by name. Second, sets can be defined via
queries consisting of several clauses describing the properties
of set members. Hence, with ncomponents as the maximum
number of components in the system and nsetsmaxClauses

as
the maximum number of query clauses of a set, the worst case
complexity of the third step (C(iii)) is:

C(iii) = O(ncomponents · nsetsmaxClauses
) (3)

Assuming that the rule set consists of nrules rules including
nconditions conditions and nsets sets, the overall complexity
C for the evaluation of all rules is:

C =O(nrules · C(i) + nconditions · C(ii) + nsets · C(iii))

=O(nrules + nsets · ncomponents · nsetsmaxClauses
+

nconditions · nconditionmaxSets
· nsetmaxMember

) (4)

If we assume a fixed size rule set, the evaluation complexity
scales linearly with the number of components in the CPN
and the sets (O(ncomponents+nsetsmaxMember

)). If we instead
assume a fixed environment and a variable size rule set where
the maximum number of clauses in a set and maximum

number of sets in a condition is limited, the evaluation
complexity scales linear with the number of rules, conditions
and sets (O(nrules + nconditions + nsets)). We measured the
time required in practice for the evaluation of different rule sets
in a fixed environment on the aforementioned evaluation PC.
The average evaluation time for rule sets of around 100 rules
was well below 0.1ms. Thus, we conclude that the evaluation
of Rango rules leads to a negligible overhead only.

B. Experiment 2: Usefulness Study

After showing that Rango leads to marginal overhead, we
now assess its usefulness, i.e., whether Rango has a practical
worth for its potential users. Rango supports them in two ways:
(i) they can express an initial rule set for an LCS with the
language and (ii) they receive human-readable output after
learning that helps to trace and explain the learning process.
Thus, we answer two research questions with this experiment:

RQ4: How useful is Rango for writing an LCS rule set?
RQ5: How useful is Rango for understanding and inter-

preting LCS output data?
1) Procedure & Methodology: To answer the research

questions, we designed an online questionnaire4 for LCS
experts, which consists of three parts. In the first part, the
experts had to describe the status quo, e.g., which typical
problems they face while using LCS or how they usually
formulate rule sets. In addition, they had to rate how difficult
it is to define an initial LCS rule set for (i) experts like
themselves and (ii) system designers or administrators working
in the industry on a 5-point Likert scale from 1 (“very hard”)
to 5 (“very easy”). Similarly, they had to rate how difficult it is
to understand and interpret typical LCS output for both groups
on the same scale. In the second part, we introduced Rango
to the experts with a textual description similar to Section IV
of this paper. In the third part, the experts again had to rate
how difficult it is to define a rule set for themselves and
system administrators but this time assuming that they could
use Rango. The same applies to understanding and interpreting
LCS output. The experts were additionally asked to provide
feedback on Rango including its syntax, missing features, and
— most importantly — its overall usefulness (“Would you use
the language if it would be available?”).

2) Participants: We applied snowball sampling to acquire
participants. We contacted several LCS experts and asked
them to recommend further participants. Five LCS experts
completed the questionnaire. On a scale from 1 (“not familiar”)
to 5 (“very familiar”), the self-rated average experience with
LCS among the participants is 4.6. Four out of five participants
have additionally used LCS to make a system adaptive.

3) Results: In the first part of the questionnaire — before
introducing Rango — three out of the five LCS experts have
mentioned “rule encoding” or “finding good initial rules” as
typical problems while working with LCS, which matches the
motivation of this paper. While the quality of the rules is in

4The whole questionnaire is available for the reviewers at https://forms.gle/
fgQK9cfcoqgM3XYYA



TABLE II
AVERAGE EASINESS OF (I) WRITING RULES AND (II) UNDERSTANDING

LCS OUTPUT ON A SCALE FROM 1 (“VERY HARD”) TO 5 (“VERY EASY”),
ONCE WITH AND ONCE WITHOUT RANGO

Task Group Status
quo

With
Rango

Writing rules LCS Experts 3.2 4.4
System administrators 2.8 3.4

Understanding output LCS Experts 3.4 4.0
System administrators 2.2 3.6

theory independent from its formal representation, we believe
that Rango can help to find better initial rules as these rules
can be expressed easier in a more intuitive format.

Two experts mentioned that they usually formulate the
initial rule set in bit strings. Improving this cumbersome way
to specify rules is the core idea behind Rango. Another two
experts start the learning process with an empty rule set and
rely on automated, random generation. Consequently, such an
approach might lead to rules that neither can be interpreted
by humans nor it is traceable how the system found the rules.
Especially in CPS use cases, which are typically complex,
defining an initial rule set with low effort — as possible with
Rango — is helpful to accelerate the learning process.

In the questionnaire, the LCS experts rated the easiness of
writing a rule set and understanding the LCS output, both
with and without Rango. They also estimated the easiness if
system administrators had to write rules or understand the
output. We summarize the results in Table II. These results
provide three insights. First, Rango facilitates the process of
writing an initial rule set and understanding the LCS output
for both LCS experts and system administrators. Second, as far
as writing rules is concerned, especially LCS experts benefit
from Rango. The experts rate the easiness of writing rules
with Rango 4.4 out of 5 (instead of 3.2 without Rango).
For system administrators, the improvement is smaller (2.8
without Rango, 3.4 with Rango). One explanation for this
observation is that system administrators lack experience with
rule-based system and, hence, find it more difficult to write
such rules. Still, it can be observed that Rango improves the
score by around 30%. Third, as far as understanding output
is concerned, Rango is expected to be especially helpful for
system administrators. The easiness of understanding LCS
output increases from 2.2 out of 5 to 3.6. In comparison, the
improvement for LCS experts is smaller (3.4 without Rango,
4.0 with Rango). We believe that the improvement was smaller
since the output was already understandable for LCS experts
anyway. This would also match the experts’ assessment in
another question that the existing output (i.e., without Rango)
already makes the learning process understandable. They rated
the traceability/explainability of the learning process 4.0 out
of 5 on a scale from 1 (“not at all”) to 5 (“very detailed”).

In summary, we conclude from this experiment that LCS
experts perceive Rango as useful. The above insights from
Table II show that Rango facilitates both writing rules (re-
search question RQ4) and understanding LCS output (research

question RQ5). In addition, the LCS experts rated Rango’s
syntax 4.2 out of 5 on a 5-point Likert scale. In the final
question whether the experts would use Rango if available,
Rango scored 4.2 out of 5 (scale: 1 (“no, never”) to 5 (“yes,
regularly”)). The experts were additionally asked to suggest
further features. The majority of these suggestions are already
included in Rango’s current version but were not explicitly
presented to the LCS experts in the textual description. One
expert suggested that Rango should allow to set bounds for
rule mutations. We agree that constructs that restrict, influence,
or guide the learning process of an LCS would be a valuable
addition in future versions of Rango.

C. Experiment 3: Usability Study

So far, we have shown that (i) Rango introduces negligible
overhead and that (ii) experts perceive the language as a useful
addition. In a final experiment, we now evaluate Rango’s
usability, i.e., how easily users understand and create rules in
Rango. In this experiment, we answer two research questions:

RQ6: How easy is it for potential users to understand rules
written in Rango?

RQ7: How easy is it for potential users to write rules in
Rango?

1) Procedure: Each participant completed an online ques-
tionnaire5 that consisted of three parts. First, participants were
confronted with a textual description of a CPS use case
from the health care domain and the corresponding code in
Rango that would achieve the desired adaptive behavior in
the use case. The task of the participants was to understand
the code step-by-step and to answer two types of questions:
(i) multiple choice questions and (ii) open questions. As far
as multiple choice questions are concerned, the participants
had, for instance, to choose the correct interpretation of a
code snippet in natural language among four alternatives. In
the open questions, participants were asked to describe the
purpose of a code snippet in their own words. The participants
did not receive a briefing about Rango’s syntax or the idea
behind the language during this part of the study. Analyzing
the participant’s performance in the first part of the study
allows us to answer research question RQ6.

Second, participants were confronted with the automotive
use case that we use as a running example throughout this
paper (cf. Section IV-A). The task of the participants was to
write the rule and its required condition, action, and sets from
Section IV-B step-by-step by themselves. The textual guidance
led the participants through the coding process (e.g., by stating
that they have to define an according set now). It additionally
contained explanations of Rango’s syntax in a format similar
to typical tutorials for programming languages available on
the internet. As an example, we show the syntax hint for the
definition of a condition in Figure 4. The performance of the
participants in this second part of the study was analyzed to
answer research question RQ7.

5The whole questionnaire is available for the reviewers at https://forms.gle/
649bMCth1F78DuPi6



Fig. 4. Syntax hint for the condition definition in the writing part of the
usability study questionnaire.

Third, participants completed a self-evaluation related to
their skills in three areas: (i) programming, (ii) computer
science research related to this paper, and (iii) enterprise in-
formation systems. The participants had to rate their expertise
with regards to several programming languages, technologies,
or concepts such as “Python”, “Cyber-physical systems”, or
“ERP” on a scale from 0 (“never heard of it”) to 5 (“expert”).

2) Methodology: We labeled the participants’ answers to
the multiple choice questions with either “correct” or “in-
correct”. The answers to the open questions with regards to
understanding rules were categorized into “correct”, “inac-
curate”, and “incorrect”. As far as the second part of the
study (rule writing) is concerned, we labeled the code that
was provided for each question as either “correct”, “with
minor syntactic mistake(s)”, “with semantic mistake(s)”, or
“incorrect”. To analyze the third part of the study (self-
evaluation), we averaged the scores that participants entered
for the items in one area to obtain three values between 0 and
5 that describe the proficiency of a participant in each of the
three areas (programming, research, and enterprise systems).

3) Participants: The participants were acquired using
snowball sampling. In total 37 participants (28 male, 8 female,
1 diverse) took part in the study. Their age ranges between
20 and 63 (average = 29) years. The participants had to
give their highest academic degree: 48.6% have a Master’s
degree, 29.7% a Bachelor’s degree, 13.5% a PhD, and 8.1%
no university degree. Most of the participants (62.2%) are
studying or working in the field of computer science. The
participants’ programming experience ranges between 0 and
35 (average = 7) years. In the self-evaluation, the participants
achieved an average score of 2.5 out of 5 in programming,
2.4 in computer science related to this paper, and 1.9 in the
enterprise information systems area.

4) Results: Figure 5 visualizes the results to answer the
research questions RQ6 and RQ7. Understanding the code
step-by-step and answering multiple choice questions and open
question achieved a high percentage of correctness. This leads
to the conclusion, that rules written in Rango are easy to
understand and that no explicit syntax briefing is required
(research question RQ6).

In the writing part, the participants were asked to write
a rule and its required condition, action and sets. In each
part of the task a small number of minor syntax mistake(s)
like wrong capitalization and forgotten brackets were made.
In practice, the parser would note these errors and the user
would get a notification to correct the syntactic mistakes. In
the following, we therefore count these answers as correct.
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Fig. 5. Results of the rule reading and writing part of the usability study.

Furthermore, only in the definition of sets semantic mistakes
were made. One common mistake was the usage of the wrong
scope for the set specification. Also, in the definition of the
difficult nonLocalSuitableNodes set, the specification
of the application set was forgotten after the Demand at-
tribute. Furthermore, the figure shows that the definition of
the condition and sets is more demanding for the users. Still,
more than half of the participants (55.3%) correctly defined the
difficult set. The easier sets were correctly defined by 64.4%
and the condition was formulated correctly by 73.7% of the
participants. The definition of the action was correct by 92.1%
and nearly all participant defined the rule correctly (97.3%).
The analysis of the data shows that even non-experts are easily
able to create rules in Rango (research question RQ7). We
further concluded, that it is useful for the application of Rango
to explicitly explain the predefined scopes and the application
of the predefined attributes in more detail to ease the definition
of the conditions and sets. This was not the case in the study.

D. Threats to Validity

Although we have evaluated Rango’s overhead, usefulness,
and usability extensively, potential threats to validity remain.
First, the overhead in terms of memory usage and compu-
tational complexity was measured on a desktop PC. While
the results strongly suggest that typical microcontrollers used
in the CPS domain could cope with the overhead, evaluating
Rango on various microcontrollers is part of future work.
Second, the LCS experts rated Rango’s usefulness solely based
on a description of the language and its features, not based on
their experience with the language in their everyday work.
Third, using a questionnaire to assess Rango’s usability could
potentially introduce a bias compared to a real-world usage of
Rango, which would include, e.g., debugging and gradually
evolving the rule set. Fourth, the majority of the participants in
the usability study were non-experts without experience with
CPS, LCS, or self-adaptive systems. Therefore, future work
might include an extended study where the intended users of
Rango such as system administrators or LCS experts apply the
language to solve typical problems of their everyday work.



VI. CONCLUSION

This paper introduces Rango — a language that allows
system administrators to intuitively specify a rule set for
LCS. Rules written in Rango are automatically transferred
into a binary format that is usable by a LCS without any
modifications. As Rango includes more than 50 CPS-specific
keywords, it is especially powerful for adaptation in CPS
use cases. In an extensive evaluation, we have shown that
Rango (i) introduces only marginal memory and computational
overhead, (ii) is perceived as useful by LCS experts, and (iii) is
intuitive and therefore usable even by non-experts.

As future work, we plan to evaluate Rango in an extended
real-world study where system administrators use the language
to solve problems from their everyday work. Therefore, we
will integrate Rango with the Chameleon middleware [16] to
offer a comprehensive approach to self-adaptation in CPS.
Rango will be used as input for the implemented LCS in
the middleware. Thus, the whole management and adapta-
tion capabilities needed to handle the complexity of CPS is
encapsulated in a single framework. System administrators
can write initial rule sets and easily use them in different
application scenarios. Since CPS may necessitate a distributed
rule evaluation, the middleware additionally offers strategies
for interference treatment and reward calculation.

REFERENCES

[1] T. Bures et al., “Software Engineering for Smart Cyber-Physical Systems
– Towards a Research Agenda,” ACM SIGSOFT Software Engineering
Notes, vol. 40, no. 6, 2015.

[2] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
Survey on Engineering Approaches for Self-Adaptive Systems,” PMCJ,
vol. 17, no. Part B, 2015.

[3] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for cyber-
physical systems: A systematic literature review,” in Proc. SEAMS.
ACM, 2016.

[4] S. Tomforde and C. Müller-Schloer, “Incremental Design of Adaptive
Systems,” J. Ambient Intell. Smart Environ., vol. 6, no. 2, 2013.

[5] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel, “Plan-
ning as optimization: Dynamically discovering optimal configurations
for runtime situations,” in Proc. SASO. IEEE, 2019.

[6] M. D’Angelo et al., “On learning in collective self-adaptive systems:
state of practice and a 3d framework,” in Proc. SEAMS. IEEE, 2019.

[7] J. H. Holland and J. S. Reitman, “Cognitive Systems Based on Adaptive
Algorithms,” Pattern-Directed Inference Systems, 2009.

[8] O. Sigaud and S. Wilson, “Learning Classifier Systems: A Survey,” Soft
Computing, vol. 11, no. 11, 2009.

[9] R. J. Urbanowicz and J. H. Moore, “Learning Classifier Systems: A
Complete Introduction, Review, and Roadmap,” Journal of Artificial
Evolution and Applications, 2009.

[10] A. Stein, D. Rauh, S. Tomforde, and J. Hähner, “Interpolation in the
eXtended Classifier System: An Architectural Perspective,” Journal of
Systems Architecture, 2017.

[11] M. Sommer, S. Tomforde, and J. Hähner, “An Organic Computing Ap-
proach to Resilient Traffic Management,” in Autonomic Road Transport
Support Systems, T. L. McCluskey, A. Kotsialos, J. P. Müller, F. Klügl,
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