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Abstract: Production processes must allow high flexibility and adaptivity to ensure the food supply. 1

This includes to react on disruptions in the supply with ingredients as well as varying quality 2

of ingredients, e.g., seasonal fluctuations of raw material quality. Digital twins are know from 3

Industry 4.0 as a method to model, simulate, and optimize processes. In this vision paper, we describe 4

the concept of a digital food twin. Due to the variability of this raw materials, such a digital twin has 5

to take into account not only the processing steps but also the chemical, physical, or microbiological 6

properties that change the food independently from the processing. We propose a model-based 7

learning and reasoning loop, which is known from self-aware computing (SeAC) systems in the so 8

called learn-reason-action loop (LRA-M loop), for modeling the input for the LRA-M loop of the food 9

production not as a pure knowledge database, but data which is generated by simulations of the 10

bio-chemical and physical properties of food. This work presents a conceptual framework on how to 11

include data provided by a digital food twin into a self-aware food processing system to respond 12

to fluctuating raw material quality and to secure food supply and discusses the applicability of the 13

concept. 14

Keywords: digital twin; food processing; Industry 4.0; self-awareness computing systems; artifical 15

intelligence 16

1. Introduction 17

The term Industry 4.0 refers to current technological changes in the environment 18

of industrial production enabled by advances in information technology. The focus of 19

Industry 4.0 is the smart factory, i.e., the connection of cyber-physical production systems 20

with Internet of Things (IoT) technology as well as intelligent data analysis. A core element 21

of Industry 4.0 is the digital twin: a virtual model of a product, the machines, or the 22

production process created with data collected by sensors that enables simulations or 23

real-time analyses of the status of production. As a digital twin integrates real-time data, it 24

provides a detailed simulation model that can support decision making. 25

The use of digital twins seems beneficial in food processing for various reasons. The 26

Corona pandemic demonstrated the vulnerability of food supply resilience. To ensure 27

the supply of food, production processes must allow a high flexibility and adaptivity 28

which requires traceability. The survey "Die Ernährung 4.0 - Status Quo, Chancen und 29

Herausforderungen" (Nutrition 4.0 - Status Quo, Opportunities and Challenges) by the 30

digital association Bitkom and the Federation of German Food and Drink Industries (BVE) 31

showed that 70% of the more than 300 companies surveyed in the food industry consider 32

end-to-end traceability from the origin of the goods to the customer to be an important 33

scenario for the current decade [1]. Various types of sensors exist to support this. However, 34

the potential is far from being exploited. Furthermore, product quality is influenced by 35

different quality levels of input materials. Especially in case of seasonal fluctuations of this 36

raw material quality, an adjustment of parameters in the production process is essential. 37

Introducing new products that are related to existing ones is also a challenge in food 38

processing. Introduction processes of new products could be simplified by a digital twin of 39

Version April 1, 2022 submitted to Proceedings https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0002-7275-0738
https://www.mdpi.com/journal/proceedings


Version April 1, 2022 submitted to Proceedings 2 of 6

already existing products. The digital twin is able to learn the correct process parameters 40

for production, and is used as knowledge foundation within a self-adaptive system [2]. All 41

those application scenarios show the potential of digital twins in the food supply chain 42

However, a digital twin of food production has additional specific requirements 43

compared to digital twins of the production of material goods. Due to the variability of 44

raw materials, these cannot be based only on the processing steps, but must also take into 45

account the chemical, physical or (micro)biological properties of the food. This vision paper 46

aims to provide a concept that complements the typical, retrospective analysis of machine 47

and process data with short-term (detection of potential problems), and medium-term data 48

analysis approaches (planning and optimization) as well as product-related analysis for 49

achieving a proactive decision making of adaptation in the food production and tracking 50

the current state of production at any time. In contrast to common Industry 4.0 approaches, 51

this paper aims at including a product-related data analysis. While Industry 4.0 approaches 52

often focus on the analysis of machine data, this paper describes a product-related data 53

analysis as well. Such an analysis can be the foundation for an adaptive system that is 54

able to control the process, autonomously react to changes, and continuously improve its 55

performance through learning. Consequently, such a concept helps to better (i) understand 56

the behavior of a food production process, (ii) predict critical situations, and (iii) determine 57

a new plan. 58

The remainder of the paper is structured as follows. Next, Section 2 describes current 59

approaches in the literature. Afterwards, Section 3 present our concept for a digital food 60

twin. Then, Section 4 discusses research challenges for the implementation of our concept. 61

Finally, Section 5 concludes this paper. 62

2. Materials and Methods 63

This section presents several approaches and concepts that we identified in the litera- 64

ture and which are relevant to the field of digital twins for the food processing industry. 65

Smart factory in the food industry. Current approaches in Industry 4.0 focus on 66

intelligent collection of data with technology from the IoT and its analysis with machine 67

learning algorithms [3]. This includes a variety of data sources, including raw material 68

data, machine data, or customer data. In particular, production planning can be optimized 69

with machine learning in this context [4]. Another use case is predictive maintenance of 70

machines [5,6]. However, the focus is primarily on the view of the process and the machines. 71

Internal processes in the food industry are not included and the view of the product is 72

limited to identifying products with bar or QR codes. Proactive adaptation improves 73

system performance as it forecasts adaptation concerns (e.g., through identification of 74

patterns in historical data) and reacts either by preparing an adaptation or adapting [7]. 75

Real-time data of production sites would help to realize proactive adaptation and dynamic 76

adjustment when a disruption takes place. 77

Digital twins in the food sector. Digital twins can be classified in six types - (i) imag- 78

inary that simulate reference objects, (ii) digital twin that monitors in real time the state 79

and behavior of an object, (iii) predictive that projects future states and behaviors of an 80

object, (iv) prescriptive and (v) autonomous digital twins (uses artificial intelligence), and 81

(vi) recollection digital twin with historical data [8]. However, there are still few concepts 82

for digital twins specialized for food processing. Further, in a recent review [9], we showed 83

that agri-food digital twins are limited to specific aspects (e.g., animal monitoring, crop 84

management, or hydroponics) rather than generically aplicable throughout the value chain. 85

Most closely related to our concept, the smartFoodTechnologyOWL initiative investigates 86

the transferability of the digital twin concept to food processing. The focus is on mapping 87

the process for better control of cyber-physical production systems. In order to make 88

quality control of food safer and more efficient, their goal is to continuously generate a 89

“virtual image” of the product during production. Other projects focus on the integration of 90

physical models to better predict the changes to the food through its processing. In [10], the 91

authors describe the integration of physical, biochemical, and microbiological processes. 92
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However, this type of digital twin often lacks the data-driven perspective of the processes 93

and [10] propose to include real-time coupling of sensor data with the digital twin. That 94

would help to foresee problems and proactively react to them. However, the focus is not 95

on adapting the production process based on the gained information nor on processing 96

the data for predicting critical events. Digital twins are used in production for monitoring 97

a production process [11]. Autonomous systems can respond to changes in state during 98

ongoing operation while digital twins can integrate a variety of data like environment data, 99

operational data, and process data [11,12]. Today food process modeling has mostly pure 100

design optimization and costs targets, but there is a great potential in reducing inter-product 101

variability, achieving higher transparency, and reducing use of resources [13]. 102

Sensors and Indicators: With the help of indicators, the presence or absence of a 103

substance, reactions between different substances, or the concentration of a particular 104

substance can be detected. Indicators show the analysis results by direct changes (usually 105

different color intensities) and are placed inside or outside the packaging. Different types 106

of indicators exist. Most common types are time-temperature indicators that show that 107

critical temperatures have been reached; freshness indicators that monitor the quality of 108

food products based on microbiologically motivated or chemical changes in the products; 109

and gas indicators that detect changes in the atmosphere of the package. In contrast to 110

immutable indicators that cannot be reused once they changed their state, sensors that are 111

either integrated into the food packaging or in the environment can detect temperature, 112

humidity, pressure on food or vibrations (accelerometers). Specific sensors such as gas 113

sensors or biosensors measure the concentration of certain gases such as carbon dioxide 114

(CO2) or hydro-sulfuric acid, which allow conclusions to be drawn about perishability. 115

CO2 concentration can be measured using non-dispersive infrared (NDIR) sensors or chem- 116

ical sensors; infrared sensors as well as electrochemical, ultrasonic, and laser technologies 117

are used to detect the oxygen concentration. Another type of sensors are biosensors based 118

on receivers made of biological materials such as enzymes, antigens, hormones, or nucleic 119

acids. These are used, for example, to identify pathogens such as salmonella, E.coli, or 120

listeria. The overview in [14] describes the recent state-of-the-art in sensor and indicator 121

types. Especially sensors facilitate real-time data collection which supports building digital 122

twin. 123

Contribution. In the case of the food supply chain, a detailed model of the supply 124

chain, which integrates real-time data to predict supply chain dynamics, can be a promising 125

concept to respond to unexpected events in the whole supply chain including field, factory, 126

retailer, and consumer. The goal of our project is to create a digital food twin that can be 127

used to track the current state of production at any time. While Industry 4.0 approaches 128

often focus on the analysis of machine data, this project aims at also including a product- 129

related data analysis (e.g., the effects of pressure exerted by machines). Recent work is 130

conducted on self-aware computing (SeAC) systems, especially to extract models from 131

data and use this models to define adaptations of a system or process, as well as on digital 132

twins in the food sector, but not in a combined approach to intelligently generate a digital 133

twin and use this digital twin for reasoning on. The main contribution is to provide a 134

framework which includes data provided by a digital food twin in real-time into a SeAC 135

system. The sensor measurements are complemented by forecasting methods, continuous 136

simulation, and critical event prediction to act as knowledge base for a self-aware learning 137

and reasoning loop (LRA-M loop) and enable adaptive, resilient food processing. 138

3. System Design 139

This paper presents and discusses a concept that complements the typical, retrospec- 140

tive analysis of supply chain data with short-term (detection of potential problems) and 141

medium-term data analysis approaches (planning and optimization) to achieve a real-time, 142

predictive decision making of adaptation in the food supply chain. Consequently, such a 143

concept helps to better (i) understand the behavior of a supply chain, (ii) predict critical 144

situations, and (iii) determine a new action plan. 145
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With the help of machine learning and artificial intelligence, the digital twin is gener- 146

ated from production data and additional data sources (e.g., scientific models, process data, 147

or raw material data) to ensure the traceability of the production and the food status, but 148

also to enable the simulation of the variability of the food in the process operation. 149

Figure 1. The digital food twin which integrates the data from various sources.

Figure 1 shows our concept of the digital twin. In the figure and the following, we 150

focus on the example of a dairy product (e.g., cheese). The digital twin gets its data 151

from the production site (e.g., sensor, machine, and processing data) and also integrates 152

raw material data, complaints, and knowledge from experts (e.g., about the handling of 153

production issues). Using different simulation methods based on models from food science, 154

the digital twin provides information about the actual food processing and provides real- 155

time feedback to the food process operation, but could also use those simulations based on 156

scientific models to generate forecasts on how the process steps might influence the quality 157

of the product. Accordingly, the digital twin is suitable for retrospective but also predictive 158

analytics of the process and the quality of the product. 159

For constructing the digital twin, we rely on machine learning procedures, especially 160

from the field of explainable artificial intelligence (XAI). Such approaches helps to transform 161

the sensor data into a digital twin model, which can be used for simulation. Further, in 162

contrast to approaches based on artificial neural networks (e.g., deep learning), those XAI 163

models are explainable and humans are able to understand and adjust them. This simplifies 164

the integration of expert knowledge in the learning process. 165

Consequently, using the digital twin as base for reasoning, processes can be adapted 166

based on the information provided by the digital twin. For controlling the food process 167

operation, the LRA-M loop known from SeAC systems research of the field of artificial 168

intelligence is used (see Figure 2). Those SeAC systems have two main properties which 169

describe their functionality [15]. First, those systems learn models which capture knowledge 170

about (i) the systems themselves (i.e., their hardware and software, including possible 171

adaptation actions and runtime behavior) and (ii) their environment such as users and 172

other systems but also environmental parameters that might be relevant. In the case of 173

food production this can be temperature, humidity, conditions of the transportation, raw 174

material quality etc. Second, SeAC systems use the information of the models to reason 175

(i.e., to predict, analyze, consider, or plan required adaptations), which enables them to act 176

based on their knowledge and reasoning results. For example, this could be the analysis 177

that some process steps do not provide the target performance and, hence, the systems 178

changes different parameters. 179

The LRA-M loop uses ongoing learning about the environment in combination with 180

reasoning for the next actions of the system. For the ongoing learning process, the empirical 181

observations are used. The learning process analyzes the observations and the gained 182

knowledge is stored using models. The knowledge from the models and the given goals 183

is used by the reasoning process to determine the next actions that the system should 184

take to achieve these goals. The generated models can be complemented by other models, 185

which, e.g., describes biological, physical, or chemical relations that influence the food. 186

These actions can affect the behavior of the system and have an impact on the environment 187

as well. The LRA-M loop is adapted as we want to include knowledge provided by the 188

previous introduced digital twin into the framework. Thereby, the knowledge provided 189

by the digital twin is not only a simple knowledge database but processed data which is 190
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generated using critical event prediction or different machine learning approaches. The 191

main goal is that the SeAC system provides recommendations to the user on how to react 192

or to adjust the parameters autonomously. 193

Figure 2. Conceptual framework on how to include data provided by a digital food twin into a
self-aware learning and reasoning loop. Adapted from [15]

4. Discussion 194

Food production processes are particularly vulnerable, as the quality of raw materials 195

vary depending on the season and in addition internal biological and chemical properties 196

has to be taken into account. This information has to be included in the food process 197

operation to secure a consistent high food quality and reduce food waste during production. 198

Up to now, there is no food process operation which includes data provided by a digital 199

twin as real-time input within an adaptive system to control the food processing. The 200

concept of digital twins could improve this reasoning on how to adapt the process (e.g., 201

machine parameters) based on the quality or properties of raw material. 202

The digital twin concept could also support various functionalities of the food supply 203

chain. Especially the possibility to simulate various aspects and, though that, predict 204

critical situation in advance (e.g., cold chain violations) help to proactively react and adapt 205

the process. This work presents the underlying concept that shows how processed data 206

(e.g., raw material, machine data, etc.) is used as input for the manufacturing site to adapt 207

production processes based on predicting critical situations. 208

Further, the digital twin can help to decrease the time to market for new products and 209

support the scale-up of the production of new products. In theory, it would be possible to 210

use the digital twin of a product with similar properties or a similar food matrix, adjust 211

this digital twin, and use it as base to learn the required adjustments in the product process 212

(e.g., new configurations of machines) for fastening the scale-up of new products. Similarly, 213

it is feasible to use the digital twin information for determination of the potential shelf life 214

of a new product based on the observations for similar products and the adjustments of a 215

corresponding existing digital twin for the new product. 216

5. Conclusions 217

In this paper, we discussed the idea of using biophysical digital twins—composed of 218

data from the process (collected by sensors), raw material of the products, but also scientific 219

models from food science—to capture and simulate the state of a food product and process 220

during food processing. Such a digital twin would have several benefits, especially it can 221

be the base for reasoning on process adjustment and adaptations. This paper described the 222

idea of integrating XAI procedures to improve the construction of the digital twins and 223
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integrating human knowledge—transferring the black box of machine learning to a gray 224

box. Further, the paper describes how SeAC systems can support adaptive food processing. 225

In our research group we made the first steps towards our vision. Obviously, there 226

are several challenges we still have to tackle. This includes a general applicable model for 227

describing the properties of the digital twin which can be applied to different categories 228

of food products. Further, we currently build the digital twins manually. We are working 229

on solutions that automate the construction of digital twins as well as the analysis of the 230

modeled food similar to solutions from the area of machine learning, e.g., AutoML or based 231

on our previous works [6,7]. Additionally, we already have several parts for a system that 232

can adapt the process from previous work and research projects—we are currently working 233

on integrating and adjusting them for food processing. 234
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The following abbreviations are used in this manuscript: 241

242

IoT internet of things
LRA-M learn-reason-action-model
SeAC self-aware computing
XAI explainable artificial intelligence
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