
111

REACT-ION: A Model-Based Runtime Environment for
Situation-Aware Adaptations

MARTIN PFANNEMÜLLER and MARTIN BREITBACH, Universität Mannheim, Germany
MARKUS WECKESSER, Technische Universität Darmstadt, Germany
CHRISTIAN BECKER, Universität Mannheim, Germany
BRADLEY SCHMERL, Carnegie Mellon University, USA
ANDY SCHÜRR, Technische Universität Darmstadt, Germany
CHRISTIAN KRUPITZER, Universität Hohenheim, Germany

Trends such as the Internet of Things or edge computing lead to a growing number of networked devices.
Hence, it is becoming increasingly important to manage communication systems at runtime. Adding self-
adaptive capabilities is one approach to reduce administrative effort and cope with changing execution contexts.
Existing frameworks for building self-adaptive software can help to reduce development effort in general.
Yet, they are neither tailored towards the use in communication systems nor easily usable without profound
knowledge in self-adaptive systems development. Accordingly, in previous work we proposed REACT, a
reusable, model-based runtime environment to complement communication systems with adaptive behavior. It
addresses the heterogeneity and distribution aspects of networks and reduces development effort. We showed
the effectiveness and efficiency of our prototype in an experimental evaluation based on two distinct use cases
from the communication systems domain: cloud resource management and software-defined networking. In
this work, we propose REACT-ION— an extension of REACT for situation awareness. REACT-ION provides
context management capabilities that enable self-improvement and prediction for proactive adaptations. These
extensions can be used to optimize adaptation decisions at runtime based on the current situation. Therefore,
REACT-ION is able to cope with uncertainty and situations that were not foreseeable at design time. We
show and evaluate in two extensive case studies how REACT-ION’s situation awareness enables proactive
adaptation and self-improvement.

CCS Concepts: • Computer systems organization→ Self-organizing autonomic computing; • Software
and its engineering→Middleware; System modeling languages; Unified Modeling Language (UML).

Additional Key Words and Phrases: self-adaptive systems, model-based, runtime environment, framework

ACM Reference Format:
Martin Pfannemüller, Martin Breitbach, Markus Weckesser, Christian Becker, Bradley Schmerl, Andy Schürr,
and Christian Krupitzer. 2021. REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adap-
tations. ACM Trans. Autonom. Adapt. Syst. 37, 4, Article 111 (August 2021), 24 pages. https://doi.org/10.1145/
1122445.1122456

Authors’ addresses: Martin Pfannemüller, martin.pfannemueller@uni-mannheim.de; Martin Breitbach, martin.breitbach@
uni-mannheim.de, Universität Mannheim, Schloss, Mannheim, Germany, 68131; Markus Weckesser, Technische Universität
Darmstadt, Karolinenplatz 5, Darmstadt, Germany, 64289, markus.weckesser@es.tu-darmstadt.de; Christian Becker, Uni-
versität Mannheim, Schloss, Mannheim, Germany, 68131, christian.becker@uni-mannheim.de; Bradley Schmerl, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA, 15213, schmerl@cs.cmu.edu; Andy Schürr, Tech-
nische Universität Darmstadt, Karolinenplatz 5, Darmstadt, Germany, 64289, andy.schuerr@es.tu-darmstadt.de; Christian
Krupitzer, Universität Hohenheim, Fruwirthstr. 21, Stuttgart, Germany, 70599, christian.krupitzer@uni-hohenheim.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1556-4665/2021/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 M. Pfannemüller et al.

1 INTRODUCTION
With increasing network sizes, mobility, and traffic, it becomes a challenging task to achieve goals
such as continuously delivering a satisfying service quality. Self-adaptive approaches adapt a system
at runtime according to changes in the execution context [48]. A self-adaptive system consists of the
managed target system and an adaptation logic managing the target system. Adding self-adaptive
capabilities to communication systems—computer networks as well as supporting structures such
as overlays or middleware—is a major research focus. For instance, self-adaptive applications in the
software-defined networking (SDN) domain can help to reduce management effort and improve
the network’s performance [18]. SDN provides possibilities to monitor and reconfigure a network
by specifying selectors for packets and corresponding actions. An adaptation logic may use these
capabilities for reconfiguring the packet flows at runtime.
Making such communication systems self-adaptive, however, is a challenging task for domain

experts, i.e., communication systems developers. First, the distributed nature of those systems
requires the collection of monitoring information from multiple hosts and the adaptation of dis-
tributed components. Second, communication systems consist of heterogeneous components, e.g.,
developed in different programming languages. Third, domain experts typically lack knowledge
about the development of self-adaptive systems.
Instead of manually integrating self-adaptivity, the domain expert may rely on frameworks or

tools. While approaches such as Rainbow [31], SASSY [44], or MUSIC [57] are suitable for the
general purpose of engineering self-adaptive systems, they are neither tailored to communication
systems, nor support the domain expert adequately in these use cases. To the best of our knowledge,
no existing approach supports multiple programming languages, enables decentralized adaptation
logics with distributed deployments, and is available as an easy-to-use open source project for
domain experts.
Motivated by these observations, we proposed REACT, a Runtime Environment for Adapting

Communication SysTems1 in [51]. REACT supports domain experts in specifying adaptation
behavior in amodel-based fashionwith Clafer [7] and UML. By implementing language-independent
interfaces and selecting deployment options, REACT connects to the target system and automatically
deploys its integrated feedback loop. Thus, it is applicable to legacy systems as well. REACT is
lightweight and easy-to-use while satisfying the specific requirements of adaptive communication
systems. To bridge the prevailing gap between self-adaptive systems research and practice [22, 71],
we implemented REACT, made it available as an open source project2, and guided domain experts
with a well-defined development process. We evaluated REACT by (i) comparing it with the state-
of-the-art Rainbow framework in a cloud resource management scenario and (ii) applying it in a
real-world use case from the SDN domain.
In this paper, we present REACT-ION— an extension of REACT that additionally integrates

features for providing situation-awareness [25] as demanded for self-adaptive systems in [29].
REACT-ION contains a context management module, which provides the foundation for situation
awareness. Additionally, situation awareness includes the concepts of being able to predict the future
and derive higher-level context called situations [25]. Hence, situation awareness can especially be
applied in combination with proactive adaptations and for adapting the adaptation logic (known as
self-improvement [39]) for tackling uncertainty [27].
The remainder of this paper is structured as follows. Section 2 reviews related work. Section 3

briefly outlines REACT’s architecture. This section also introduces how REACT’s implementation

1This paper is an extended version of previous work appeared in the Proceedings of the 1st IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS 2020)
2Available here: https://github.com/martinpfannemueller/REACT.

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://github.com/martinpfannemueller/REACT

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:3

supports self-adaptivity. Section 4 proposes REACT-ION. It first presents the concept of situa-
tion awareness. Based on this concept, the section describes REACT-ION’s context management
module. This includes improved interfaces enabling external systems outside of REACT-ION to
use the context information for situation awareness. Following, the same section includes the
application of proactive adaptation with REACT-ION, as well as the presentation of a possibility
for compositional adaptation of the adaptation logic using multiple feedback loop instances as
foundation for self-improving a REACT-based adaptation logic. Section 5 first briefly summarizes
the previous evaluations presented in [51], which evaluated our approach in distinct use cases and
compared REACT to the state of the art. Then, it presents evaluations considering proactivity and
compositional self-improvement. Finally, Section 6 summarizes our findings and outlines future
work.

2 RELATEDWORK
Engineering of self-adaptive systems is a prominent research area with a large body of excellent
related work that we can build upon. We review the research landscape in [37]. Several related
approaches perform adaptations based on architectural models (e.g., [28, 48, 61]) or specify archi-
tecture definition languages for self-adaptive systems (e.g., [19, 24, 42]). Model-based engineering
approaches such as [10, 30, 47, 52] often use DSPLs with feature models. The models@run.time
research proposes to use runtime models that represent the system and environment for rea-
soning [8, 12]. All of the aforementioned approaches, however, do not offer an implementation
explicitly designed to be used by others. Since we design an approach that aims at high applicability
for practitioners and fellow researchers, we focus on implementation aspects of related work in the
remainder of this section, as summarized in Table 1.

First, an approach that optimally assists domain experts should support all self-* properties [36]—
self-configuration, self-optimization, self-healing, and self-protection—to be suitable for various
use cases in communication systems. Second, the integration of a ready-to-use adaptation decision
engine, which adapts the communication system based on models, goals, or utilities makes the
approach useful for domain experts without extensive knowledge about self-adaptive systems. Third,
the support for existing systems is essential to integrate self-adaptivity into legacy systems. Fourth,
a use case independent approach is applicable to a wide range of communication systems. We
observe that multiple approaches fulfill these requirements. However, FESAS [38] and HAFLoop [74]
for instance, provide excellent support with reusable MAPE components, but do not integrate a
decision engine.
We aim to support the domain expert during the development process. Especially in the het-

erogeneous communication systems landscape, an approach is easy to use if it supports multiple
programming languages such as the approach by Malek et al. [56]. A vast majority of approaches
relies on particular programming languages only, with Java being the most frequently used lan-
guage. In addition, predefined interfaces as introduced by the prominent Rainbow [31] framework
allow connecting the target system easily to the adaptation logic, which is especially important
for legacy systems. Rainbow, however, belongs to the approaches [16, 17, 31, 44, 63] that do not
specify an easy-to-follow development process.

We argue that an approach that is suitable for large and heterogeneous communication systems
must support decentralized control with multiple feedback loops [21]. This typically also encom-
passes that one feedback loop itself can be separated into several distinct components that may
run distributed. Most existing approaches are designed for centralized feedback loops only. As a
running system might change over time in an unexpected way, it is helpful to adjust the behavior
manually, apply self-improvement [39], or change the deployment at runtime. This holds true for
communication systems in particular, where, e.g., new components or subsystems may join or leave

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:4 M. Pfannemüller et al.

Capabilities Dev. Sup. Depl. Eval.

Author/System

A
ll
Se
lf
-*

Pr
op

er
ti
es

Pr
ov

id
es

D
ec
is
io
n
En

g.

Su
pp

or
ts

ex
.S
ys
te
m

U
se

C
as
e
In
de

pe
nd

en
t

M
ul
ti
La

ng
ua

ge
Su

pp
or
t

Pr
ed

efi
ne

d
In
te
rf
ac
es

Sp
ec
ifi
ed

D
ev
.P

ro
ce
ss

D
ec
en

tr
al
iz
ed

Lo
op

R
un

ti
m
e
M
od

ifi
ca
ti
on

s

C
od

e
A
va

il
ab

le
C
om

pa
ri
so
n
A
va

il
ab

le

ActivForms [72] • • • • • • •
Cetina [17] • •

EUREMA [68, 69] • • • •
FESAS [38] • • • • • • • •
Genie [9] • • • • •
GRAF [1] • • • • • • •

HAFLoop [74] • • • • • • • •
KX [49] • • • • • •

Malek [56] • • • • • • •
MOSES [16] • •
MUSIC [57] • • • • • •
Preisler [53] • • • • •

Rainbow [20, 31] • • • • • • •
REFRACT [63] • • •
SASSY [44] • • • • •
StarMX [4] • • • • • •

Tomforde [64] • • • • • • •
Zanshin [62] • • • • • • • •

REACT • • • • • • • • • • •
Table 1. Overview of related approaches (Depl. = Deployment, Dev. = Development, Eng. = Engine, Eval. =
Evaluation, ex. = existing, Sup. = Support)

the system at any time. In several related approaches [4, 16, 17, 31, 53, 62, 68, 69, 72], the influence
of the developer already ends with the design process.
Ideally, the source code of the implementation is publicly available and well documented. This

helps to foster further research and enables adoption by domain experts in practice. Only a small
subset of existing approaches [4, 31, 38, 62, 72, 74] is available at present. Moreover, a comparative
evaluation with other approaches highlights the merits of the particular approach and gives users
guidance to select the proper approach for their respective communication system. Here, only
Rainbow [31] and Zanshin [62] have been compared in [2].
Accordingly, in [51], we proposed REACT, a reusable runtime environment for model-based

adaptations in communication systems. REACT contributes to the state of the art due to its focus
on communication systems and domain expert support. None of the existing approaches offers
multi-language support, enables decentralized control as well as distributed deployments, and is
available as an open source project. We made the source code of REACT’s implementation available
and compared it with Rainbow. A summary of the comparison is provided in Section 5.

3 REACT- A REUSABLE RUNTIME ENVIRONMENT FOR ADAPTIVE
COMMUNICATION SYSTEMS

This section briefly introduces REACT’s architecture and internal feedback loop. We refer the
interested reader to [51] for more details and justifications of design decisions.

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:5

REACT

requires

Communication System Effector

IEffectorISensor IKnowledgeService

Association Implements Provided

re
qu

ire
s

Adaptation Options
Specification

Target System
Specification

PA

M E

Sensor

Legend

Knowledge Service

requires

Fig. 1. REACT’s architecture in a UML-like notation. It consists of one or multiple MAPE feedback loop(s)
connected to instance(s) of the knowledge service with the adaptation options specification and target system
specification provided by the domain expert. REACT’s reusable feedback loop uses the adaptation options
specification to solve the current adaptation problem and maps it to the target system with the target system
specification. The target system connects to REACT via well-defined sensor and effector interfaces.

3.1 REACT’s Architecture
In contrast to self-adaptation frameworks which offer a standard way to build self-adaptive ap-
plications, we refer to REACT as a runtime environment, i.e., a platform that is additionally able
to plan and execute adaptations based on user-specified adaptation behavior. REACT includes a
feedback loop as well as interfaces for connecting target systems. Potential target systems in the
communication systems domain are overlay networks such as peer-to-peer systems and underlay
networks, e.g., in SDN scenarios. However, REACT could possibly be used in other application
domains as well. The feedback loop follows the MAPE-K architecture that consists of components
for (i)Monitoring the system and the environment, (ii) Analyzing the monitored data for necessary
adaptations, (iii) Planning the adaptations, and (iv) Executing the adaptations in the target system as
well as (v) a shared Knowledge base [36]. The feedback loop uses information stored in an instance
of the knowledge for reasoning. It receives sensor information from the communication system
as an input and determines the required adaptations as an output via interfaces. Figure 1 shows
REACT’s architecture on top of a communication system using a UML-like notation. The MAPE
components and the knowledge service are generic, internal parts of REACT and are independent
from the use case. These gray parts in Figure 1 are encapsulated in a ready-to-use fashion and
do not require any programming effort from the domain expert. The white boxes represent the
specifications and the effector implementation that have to be provided by the domain expert.

REACT requires two models:
1) The adaptation options specification is an explicit representation of valid reconfigura-

tion options. It thus describes the problem space with a structural modeling language, including
constraints.

2) The target system specificationmodels the architecture of the target system, i.e., the solution
space. After solving a problem in the problem space, REACT maps the result to the solution space
according to the target system specification.
With these two models, REACT is able to perform architectural as well as parametric adapta-

tion [43]. The separation of the two models decouples the specification of the reconfiguration

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:6 M. Pfannemüller et al.

behavior from the target system and its architecture. REACT uses the live sensor data provided by
the communication system, together with the adaptation options specification to adapt the system
to the desired target state. REACT’s internal MAPE components themselves are reusable since they
are working with arbitrary adaptation options specifications and target system specifications.

To connect to the underlying communication system, REACT provides programming language
independent sensor and effector interfaces (ISensor and IEffector). The sensor receives live con-
text information from different parts of the communication system and forwards it to the feedback
loop. The effector transfers the result of the feedback loop to the respective part of the communica-
tion system. The exposed IKnowledgeService interface can be used by domain experts to update
the specifications stored in a knowledge service instance at runtime. The IKnowledgeService
interface thus allows, for instance, REACT to be connected to a self-improvement [39] module that
continuously learns and improves the models. Multiple instances of the MAPE-K components and
the sensor can be distributed on different machines, as the communication between the components
is handled by REACT. Thus, this enables high scalability and allows distributed deployments and
decentralized control. Fully decentralized or hybrid patterns, as described in [21], are realizable.

3.2 Enabling Self-Adaptivity with REACT
In this section, we summarize the implementation of REACT and how it achieves self-adaptivity.
First, we describe how domain experts use a model-based specification approach for self-adaptation
with REACT. Second, we explain REACT’s integrated feedback loop that leverages the model-
based specification without human intervention. Third, we show how REACT makes decentralized
control, distributed deployment, and changes at runtime possible.

3.2.1 Modeling. An essential part of REACT are the models of the adaptation behavior (adaptation
options specification) and of the target system (target system specification). The domain expert
provides these models at design time and may update them at runtime. REACT uses the models
at runtime to adapt the target system. REACT supports adaptation options specifications in the
structural specification language Clafer (class, feature, reference) [7].

A Clafer-based model is created using a single type of element, named Clafer. A Clafer represents
a type, an attribute, a relationship, an instance, or a combination of these. Each Clafer has a name
and is either top-level or nested under other Clafers. Nesting is expressed using indentation. We
illustrate Clafer’s basic modeling capabilities with the following use case from a cloud server
management scenario, where a domain expert uses REACT to implement adaptive behavior. Based
on the context dimensions (i) number of running servers, (ii) total number of servers, and (iii)
average response time, REACT launches additional servers adaptively if required. The launch of
an additional server happens if the average response time exceeds a threshold value (here 75) and
additional servers are available. Listing 1 shows an exemplary adaptation options specification in
Clafer for this use case. Line 1 contains a (top-level) Clafer named ServerLauncher that describes
that an additional cloud server should be started. Clafers may have cardinalities, while the default
cardinality is 1. By adding 0..1 to Line 1, we specify that model instances are valid with either
none or only one ServerLauncher Clafer. Clafers may be abstract. An abstract Clafer “aggregates
commonalities” [3] like a class in object-oriented programming. Hence, a Clafer can inherit from
an abstract Clafer and use abstract Clafers like a type. The lines 2-5 describe an abstract entity of
type Context with integer attributes. A solution of this problem space requires to have exactly one
instance of this Clafer with all attributes set. Lines 6 and 7 define the auxiliary Clafers ExtraServers
and HighRT that state whether it is possible to start an additional server and whether the response
time is high. In addition, a Clafer model may contain constraints in brackets. Lines 8-9 specify
constraints that set the auxiliary Clafers ExtraServers and HighRT according to the context. Line

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:7

1 ServerLauncher 0..1
2 abstract Context 1
3 servers −> integer 1
4 maxServers −> integer 1
5 responseTime −> integer 1
6 ExtraServers 0..1
7 HighRT 0..1
8 [if Context.servers < Context.maxServers then one ExtraServers else no ExtraServers
9 if Context.responseTime >= 75 then one HighRT else no HighRT
10 if HighRT && ExtraServers then one ServerLauncher else no ServerLauncher]

Listing 1. Adaptation options specification in Clafer for self-adaptive cloud server management.

10 is the adaptation rule stating that the ServerLauncher Clafer should be present in a model
instance if the response time is high and more servers are available.

REACT uses separate models for the adaptation behavior, which is modeled in Clafer, and the
target system. Hence, REACT needs a mapping from the problem space to the solution space,
which represents the target system. For this purpose, REACT uses the target system specification,
which the domain expert provides in UML as class diagrams. REACT parses the UML class diagram
as an XML file complying to the UML 2 Abstract Syntax Metamodel by the Object Management
Group. Due to this standardized format, the domain expert can create the XML file manually or
use a graphical editor that offers an export in this format such as Papyrus3. In the cloud server
management example with its adaptation options specification in Listing 1, the simplest UML model
only contains a single class named ServerLauncher. An instance of this UML model indicates if
the corresponding class should be present in the target system or not.

3.2.2 Integrated Feedback Loop. The previous section describes the modeling of the adaptation
options specification in Clafer and the target system specification in UML. Now, we show how REACT
autonomously leverages these use case dependent models to achieve self-adaptivity. Figure 2 shows
the behavior of REACT’s integrated MAPE-K feedback loop in the aforementioned cloud server
management example. The feedback loop starts as soon as new sensor information is received via
the sensor interface in JSON format. In the example, this sensor data 1 is context information
about the cloud system. The received information is handed over to the monitoring component.

REACT allows domain experts to choose from multiple integrated monitoring strategies. In the
default strategy, the monitor parses the raw JSON data and hands it to the analyzer as a map 2 .
REACT offers an aggregation strategy that additionally aggregates information from multiple
sensors and a windowing strategy that applies a sliding window approach to the incoming sensor
values. An IMonitoringStrategy interface further makes it possible for advanced users to create,
share, and integrate custom monitoring strategies.

The analyzer fetches the adaptation options specification 3 from the knowledge service. It uses
the abstract Clafers specified in the adaptation options specification to create concrete Clafers from
the monitoring data. To achieve this mapping, the original sensor data contains type attributes.
REACT uses these type attributes to map the monitoring data objects to the correct abstract Clafers
in the adaptation options specification. In the exemplary case, the type has the value Context and
REACT therefore maps it to the Context Clafer in the adaptation options specification 3 . The
concrete Clafers are then forwarded to the planning component 4 .
REACT’s planner merges the generated Clafers with the adaptation options specification to

the problem specification. The problem specification thus contains the global constraints of the
adaptation options specification and the current constraints imposed by the sensor data. Now, REACT

3https://www.eclipse.org/papyrus/

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://www.eclipse.org/papyrus/

111:8 M. Pfannemüller et al.

Knowledge

M

A P

{"Ctx“: { "type": "Context",
 "servers": 2,
 "maxServers": 3,
 "responseTime": 80 }}

Ctx : Context
 [servers = 2]
 [maxServers = 3]
 [responseTime = 80]

Map
<String,Object>

abstract Context 1..1
 servers -> integer 1..1
 maxServers -> integer 1..1
 responseTime -> integer 1..1
(…)
ServerLauncher

ExtraServers
HighRT
(…)

Ctx : Context
 [servers = 2]
 [maxServers = 3]
 [responseTime = 80]

{ "classes":
 ["ServerLauncher":{}]
}

E

Legend
Data Flow

Used Knowledge

Sent Data

Mapping

1

7

5

4

Target System
Specification

6

Sensor

Effector

ServerLauncher

Adaptation Options Specification
…
abstract Context 1..1
 servers -> integer 1..1
 maxServers -> integer 1..1
 responseTime -> integer 1..1

ServerLauncher 0..1
… 3

2

Fig. 2. An adaptation cycle of REACT for the cloud server management example. The analyzer maps the
JSON-based sensor information to the adaptation options specification in Clafer. The planner evaluates the
model and finds a valid instance. Here, it adds a ServerLauncher Clafer as starting a new server is desired.
The effector maps the plan to the target system specification in UML and transfers the adaptation to the target
system.

solves this problem specification as a constraint-satisfaction problem (CSP) with Chocosolver [54],
a Java-based library for constraint programming. Hence, the solver finds a model instance 5 that
satisfies all constraints. In the exemplary case, this model instance would either contain or not
contain the ServerLauncher Clafer, which constitutes the adaptation decision.
The planning result in the form of concrete Clafers is then passed to the executor, which

maps the Clafers to the target system specification 6 . REACT maps the Clafers by name to the
classes or parameters of the UML model and creates an UML instance. In the example, the cre-
ated ServerLauncher Clafer (note the missing 0..1 cardinality in 5) is mapped to the class
ServerLauncher of the target system specification. REACT transforms the UML instance to a
language-independent representation. Finally, the executor passes this representation via the effec-
tor interface 7 to the target system, where adaptations will take place. The integrated feedback
loop of REACTworks with arbitrary adaptation options specifications and target system specifications
and is thus applicable to a wide range of scenarios.

3.2.3 Communication and Deployment. We showed how REACT makes it possible to build self-
adaptive communication systems or integrate self-adaptive behavior into a legacy system while
only demanding two models from the domain expert and low programming effort. Another main
strength of REACT is its ability to run distributed. To achieve this, REACT’s internal communication
interfaces between MAPE components, knowledge service, and sensor/effector interfaces are
specified in ZeroC Ice’s Interface Definition Language [35]. Ice is a well-established framework for
creating Remote Procedure Call (RPC) bindings to many programming languages. For supporting
distribution, runtime change of the deployment, and bootstrapping, REACT’s MAPE-K components

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:9

and sensors are integrated into OSGi bundles with iPOJO [26]. The domain expert deploys the
system with a key-value-based configuration file for each component. REACT’s OSGi runtime
then instantiates one component for each available key-value-based configuration file on a host.
Thus, domain experts can deploy the feedback loop easily in a distributed way. For setting up the
connections to the successor and knowledge component(s), REACT uses Multicast DNS in local
networks or a Consul4 registry for automatic setup, or manual IP address and port specifications.
Apart from distributed deployment, REACT further supports changes of the adaptation options

specification, the target system specification, and the deployment at runtime. REACT allows to use
an RPC at runtime to add models remotely to the knowledge service. Hence, a domain expert can
change the self-adaptive behavior without interruptions. The domain expert can also change the
deployment or re-locate REACT’s components. After updating the configuration files, REACT’s
OSGi containers reconfigure automatically.

4 REACT-ION: SITUATION AWARENESS WITH REACT
In this paper, we present REACT-ION— an extension for REACT that achieves situation awareness.
Situation awareness can be defined as“the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning, and the projection of their status in
the near future” [25]. Accordingly, the three levels of situation awareness consist of (i) percep-
tion, (ii) comprehension, and (iii) prediction [25]. Situation awareness has been already applied
in the ubiquitous and pervasive computing domain, mainly with a focus on the perception and
comprehension levels (e. g., see [73]). Fredericks et al. have studied and discussed the usefulness
of situation awareness in self-adaptive systems in [29]. REACT-ION supports all three levels of
situation awareness. First, it extends REACT with perception by providing a context management
module (cf. Section 4.1). As the comprehension of a situation is dependent on the use case and
scenario, the context manager is also able to distribute context information for supporting the
domain expert to reason about it and integrate arbitrary situation recognition techniques. For
addressing the projection, we show how REACT-ION can be used to adapt a target system proac-
tively (cf. Section 4.2). As soon as situations can be determined, this information can be used
for adapting the adaptation logic (self-improvement [39]) for tackling uncertainty [27]. Thus, we
exemplarily apply compositional adaptation of the adaptation logic by using multiple feedback
loops (cf. Section 4.3). This enables the domain expert to choose a feedback loop based on the
current situation of the system. As REACT-ION is an optional extension, domain experts are free
to disable it for use cases that require a lightweight deployment of REACT.

4.1 Context Management Module
REACT-ION provides a context management module as a foundation for situation-awareness.
The module includes a database that stores the current context, as well as past context, and the
corresponding adaptations by the feedback loop. This has two implications. First, it paves the way
towards self-improvement [39] with REACT, i.e. adapting the adaptation logic. The context manager
is able to collect and distribute the context to an external software component such as a machine
learning pipeline. This external component may reason on the data to infer the current situation.
Based on the situation, the external component is then able to modify the REACT-based system
with REACT’s well-integrated options for runtime modification (cf. Section 3.1). Second, context
management may accelerate adaptation. If the context has been similar in the past, REACT-IONmay
skip the planning process and perform the same adaptation again in case that the appropriateness
of this adaptation was positively evaluated in the retrospective.

4https://www.consul.io/

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://www.consul.io/

111:10 M. Pfannemüller et al.

Context management is a major research focus in pervasive and context-aware computing. The
interested reader is referred to [33, 41] for an overview of context-aware systems. Prominent
approaches for context management are Aura [32], CARISMA [15], Gaia [55], or PROACTIVE [66].
The approaches differ in terms of context storage and context distribution. As far as storage is
concerned, designs range from model-based approaches (e.g., [15]) to ontology-based approaches
(e.g., [55]). Perera et al. [50] as well as Lim and Dey [41] observe a shift from rules towards ontology-
based approaches for reasoning. REACT-ION is applicable in a wide range of use cases, which makes
a fixed ontology unsuitable for context management. Thus, we follow a model-based approach
for REACT-ION. The distribution of context to an external component either works query- or
subscription-based [50]. REACT-ION requires a flexible solution that is applicable in many use
cases. Thus, the context management module is able to handle single queries or to notify subscribers
about context changes.

REACT

Communication System Effector

IEffectorISensor IKnowledgeService

PA

M E

Sensor Knowledge Service
AOS

Acquisition
Context Manager

TSS

Storage Reminiscence
Context Adaptations temperature +- 1.0

humidity +- 5.0

Distribution

Association Implements ProvidedKey

Fig. 3. Architecture of REACT including the optional context manager module. It consists of a Acquisition,
Storage, Reminiscence, and Distribution functionality and is connected to the knowledge service. AOS: adapta-
tion options specification, TSS: target system specification.

4.1.1 Architecture. A holistic context management approach supports all four phases of the context
life cycle, consisting of context acquisition, modeling, reasoning, and distribution [50, 60]. We design
REACT-ION’s context management module along these four phases. Figure 3 shows the architecture
of REACT-ION including the Context Manager.
The context management module contains a Storage component with a database for modeling

the context and interfaces for manipulating and querying the data. The database stores the context
information and the corresponding adaptation decisions by REACT-ION. Following the context life
cycle, context acquisition starts at REACT-ION’s ISensor interface that receives sensor data from
the target system. The analyzer sends the current context information to the knowledge service,
which forwards it to the context manager for storage. In this step, the context information can be

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:11

distinguished from system parts, which should be reconfigured, by excluding all parts that have a
corresponding element in the target system specification.

REACT-ION offers two options for context reasoning. First, the internal Reminiscence component
is able to decide whether the current context has been sensed in the past. In this case, REACT-ION
skips the planning phase of its feedback loop and executes the previously planned adaptation.
If a context is unknown by the context storage, the context is added to the context storage and
the loop continues. Accordingly, the executor sends the corresponding target system specification
to the knowledge component, which forwards it to the context manager. This enables to use
this adaptation in future loop executions that skip the planning phase. The configuration file
of the analyzer (cp. Section 3.2.3) allows domain experts to enable or disable this behavior. As
slight deviations in a numerical context dimension should be interpreted as a similar context, the
Reminiscence component uses absolute thresholds. Only if the new value differs from a previous
value by more than this absolute value, it will be considered as a new state. The thresholds are
configurable at design time and at runtime. Second, an external component may reason on the
context data.

REACT-ION includes a Distribution component for the last of the four context life cycle phases.
This component communicates with external software that, e.g., reasons on the context data to
detect the current situation. It distributes (new) context information and planned adaptations via a
publish/subscribe system. Apart from a subscription, the Distribution component also offers the
option to query the Storage component via the publish/subscribe system.

4.1.2 Implementation. For the context acquisition, the context data in form of Clafers created in
the analyzer is used as foundation. All Clafers in the adaptation options specification without a
corresponding element in the UML-based target system specification represent the context. The
Storage component includes a MySQL5 database with two tables for i) context and ii) adaptations.
REACT-ION automatically generates the table structures at the system start based on the adaptation
options specification and the target system specification. The adaptation options specification already
pre-defines a suitable schema for the SQL-based context table(s) to store the context information.
A foreign key relation references the corresponding adaptation in the adaptations table. The
Reminiscence component contains amap structure that stores the configurable percentage thresholds
for numerical context dimensions. REACT-ION offers an interface to adjust these thresholds at
runtime via a method in the IKnowledgeService interface (cp. Section 3.1). This is beneficial
in use cases where the granularity of planning should be adjusted at runtime, e.g., to skip the
planning phase more often when the computational load for the REACT-based feedback loop
is high. The Distribution component uses the Message Queuing Telemetry Transport (MQTT)
protocol to provide a lightweight publish/subscribe solution. The usage of the well-established
protocol enables an intuitive communication of external components with REACT-ION’s context
management module. We use Eclipse Mosquitto6 for the MQTT broker and Eclipse Paho7 as the
Java library for communicating with the broker. If the context distribution is enabled via a method
in the IKnowledgeService interface (cp. Section 3.1), the module connects to an MQTT broker and
publishes events. REACT-ION allows domain experts to start a local MQTT broker or to connect to
an external one.
The context management module offers a foundation for several sophisticated use cases with

REACT-ION. In the following, we investigate two options. First, we show in Section 4.2 how

5https://www.mysql.com
6https://mosquitto.org/
7https://www.eclipse.org/paho/

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://www.mysql.com
https://mosquitto.org/
https://www.eclipse.org/paho/

111:12 M. Pfannemüller et al.

REACT-ION achieves proactive adaptation based on the context management module. Second, we
show in Section 4.3 how context-awareness may lead to self-improvement with REACT-ION.

4.2 Proactive Adaptation with REACT-ION
Self-adaptive systems either perform reactive or proactive adaptation [40]. Traditionally, many
self-adaptive systems only adapt after a change in the target system has been detected, which
makes them reactive. This has several disadvantages such as slower adaptation to changes which
may — in the worst case — lead to a failing target system. Proactive adaptation aims at avoiding
such situations in the first place [33, 40]. In general, for performing proactive adaptation, the system
context has to be known [66]. REACT-ION’s context management module covers this requirement.
In this section, we show how proactive adaptation can be achieved with REACT-ION.
Proactive adaptation with REACT-ION requires three steps: i) communicating the context to a

prediction system, ii) predicting future context, and iii) using the prediction to plan adaptations.
In REACT-ION’s context management module, the context is represented as a Clafer-based spec-
ification which is transformed into a context database. Hence, the context management module
provides a history of context information in a structured way in its Storage component. In addition,
the Distribution component is able to communicate with external prediction and learning systems.
Thus, REACT-ION’s context management module is suitable to perform the first step of proactive
adaptation.
The choice of the prediction system for step ii) is highly dependent on the use case. Domain

experts are able to easily connect their prediction system of choice to REACT-ION’s context
management module via the platform-independent publish/subscribe system. Often, time series
forecasting is used for prediction [76]. In Section 5.2, we therefore show how to connect a REACT-
based self-adaptive system to the Telescope [75] time series forecasting framework to make context
predictions.

REACT-ION offers two options to use the prediction for proactive adaptation in step iii): an
implicit and an explicit approach. For the implicit approach, the prediction system sends the
predictions to REACT-ION via the ISensor interface. Instead of the current context information,
REACT-ION uses the prediction for the usual planning process. Consequently, REACT-ION adapts
the system based on the predicted information instead of the current context, which results in
proactive adaptation. This approach leads to minimal effort for domain experts since adaptation
options specification and target system specification do not need to be changed. On the downside,
this approach may lead to bad adaptation decisions as it only relies on — possibly inaccurate –
predictions. Thus, REACT-ION also offers the explicit approach, where the predicted context is
added to the adaptation options specification. In this case, the adaptation decisions are based on
both the current context and the predicted context. Even though this approach requires additional
modeling overhead, it enables domain experts to influence how the predictions are incorporated
into the decision-making process.

4.3 Self-Improvement with REACT-ION
REACT-ION’s context management module enables domain experts to introduce situation aware-
ness to their system. Additionally, REACT-ION offers the option to modify the feedback loop at
runtime (cp. Section 3.1). When combining both, domain experts are able to modify the feedback
loop based on the current situation. This “adjustment of the adaptation logic to handle former
unknown circumstances or changes” [39, p. 2] in the environment or the target system is called
self-improvement. Self-improvement is important as complexity and uncertainty may lead to sit-
uations that were not foreseeable at design time [65]. Examples for such situations include a

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:13

significant change of the characteristics of the system’s environment or user group (hence, the
users’ objectives) or the requirement to add or update adaptation decision rules through learning.

REACT-ION offers three options for self-improvement. First, the adaptation options specification
and the target system specification may be adjusted at runtime (cp. Section 3.1) based on the
current situation. This leads to a change of the reconfiguration behavior. Second, the deployment
of REACT-ION’s MAPE-K components is changeable at runtime (cp. Section 3.2.3). For instance, in
high load situations, analyzer and planner may be migrated to separate machines. Third, several
MAPE-K loops might exist simultaneously and might be used for different situations. In this section,
we show how REACT-ION is able to achieve self-improvement in this case.

In the literature, many approaches for analyzing and planning in self-adaptive systems exist.
Some approaches provide fast adaptations, others are easy to use, applicable to a wider range of
use cases, or require less memory. We propose to combine several reasoning approaches and to
choose the suitable feedback loop based on the current situation. The reconfiguration behavior of a
REACT-based system is modeled in Clafer and UML. Planning happens by solving a constraint-
satisfaction problem (cp. Section 3.2). This approach is easy-to-use for domain experts but may
lead to considerable overhead in terms of computational complexity and memory footprint. We
now integrate an alternative reasoning approach into REACT-ION. This approach relies on context
feature models (CFMs) [34, 58] for specifying the problem space. A CFM is a hierarchical tree-like
model and specifies the reconfiguration space of a self-adaptive system including the adaptations
based on the system context. While the left subtree represents the configuration features and
attributes of the system, the right subtree represents context features and context attributes.
Constraints between both subtrees resemble the reconfiguration behavior. Figure 4 shows a small
example CFM of a smartphone reconfiguring its wireless connectivity. In the shown model, the
system can turn on the LTE and/orWifi features for providing theWireless Connectivity feature.
The context includes the current latency of the connection and the location of the phone. The
phone can either be Away or at Home. Accordingly, the shown constraints turn Wifi on at home,
and off when being away. Finally, in cases the use of the Wifi connection results in higher latency
than 100ms, the LTE connection is enforced for possibly lowering the latency.

CFM

System Context

Wifi Away Home

Location

LTE

Wireless Connectivity

Lateny ≥ 100 requires LTE
Away excludes Wifi
Home requires Wifi

Mandatory

Alternative

… System feature

…
Dom: l..u

… Context feature

System attribute

Key

Optional …
Dom: l..u

Context attribute
Latency

int: 0..500

Fig. 4. Exemplary CFM that represents the reconfiguration space of the wireless connectivity of a smartphone.
Depending on the constraints, it determines the selection of LTE or Wifi for providing wireless connectivity.

CFMs can be translated into boolean satisfiability (SAT) problems or mixed-integer linear pro-
gramming (MILP) problems [70]. While SAT problems can be solved relatively fast with lower
expressiveness, MILP problems can be applied to specifically state integer or real parameters and
optimize the results using multi-objective optimization. Figure 5 shows REACT-ION’s architecture
with CFM-based reasoning. The knowledge consists of the CFM specified with CardyGAn [59],
which models the problem space, and a (UML) class diagram, which models the solution space. In
the monitoring step, the sensor data is preprocessed. In the analyzing phase, the right part of the
CFM — the context — is instantiated. Based on this context information, the planning component
transforms the CFM and the context instance to a SAT or MILP problem resulting in a complete

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:14 M. Pfannemüller et al.

system configuration including the system features. Finally, the executing phase creates a class
diagram instance of the solution space from the completed CFM. For more information on this
feedback loop, the interested reader is referred to [70].

REACT (CFM-Based)

requires

Communication System Effector

IEffectorISensor IKnowledgeService

Association Implements Provided

re
qu

ire
s

Adaptation Options
Specification

Target System
Specification

PA

M E

Sensor

Key

Knowledge Service

Class
DiagramCFM Mapping requires

Preproc.
Raw Context

JSON

{;}
XML

</>

CFM

System

ekT
C LMST Ya

o
PointTo
Point Gossip Data

Collection
l*kTCInterval

Scenario

ConeCount

Max
Power

TopologyControlAlgorithm

Context

Context
(Partial Config.)

CFM

System

ekT
C LMST Ya

o
PointTo
Point Gossip Data

Collection
l*kTCInterval

Scenario

ConeCount

Max
Power

TopologyControlAlgorithm

Context

Optimal System
(Full Config.)

1..* 1..2

Class Diagram
Instance

Fig. 5. Architecture and functionality of REACT-ION using the CFM-based feedback loop. The knowledge
consists of a CFM representing the problem space, a class diagram representing the solution space, and an
explicit mapping between both. The boxes attached to the MAPE functionalities show the results of each
component [70].

Deploying both the Clafer-based feedback loop and the CFM-based loop simultaneously has
several advantages. For instance, it might be beneficial to execute the CFM-based reasoning approach
with a SAT solver if the target system is in a critical state. While the result might not be optimal, it
could be good enough for bringing the system back into a non-critical state as fast as possible. At
the same time, a more complex Clafer-based planner could be executed as well, which provides an
optimized solution later. Hence, situation awareness enabled by the context management module
may improve adaptation decisions at runtime by selecting the suitable feedback loop or by executing
multiple loops in parallel. In Section 5.3, we evaluate self-improvement with REACT-ION in a case
study in which we use the Clafer-based and the CFM-based feedback loops simultaneously.

5 EVALUATION
This section, first, presents (i) a brief summary of the results comparing REACT with Rainbow [31],
a well-known and frequently applied framework for model-based adaptation, and (ii) a condensed
overview of the application of REACT in an emulated communication system in the field of Software-
Defined Networking (SDN) based on [51] (cp. Section 5.1). Second, Section 5.2 builds upon the
extensions of this paper and evaluates proactive adaptations using REACT in a smart grid use
case. Third, Section 5.3 outlines the evaluation of applying two different feedback loops as part of
REACT, which enables to select feedback loops at runtime for self-improvement. Finally, Section 5.4
discusses possible threats to validity. With the evaluation, we target the prediction dimension for
situation-awareness [25] as the other two dimensions — perception and comprehension — mainly

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:15

would be a functional evaluation of the context management module. Additionally, the interplay of
the feedback loops shows a practical use case for the benefits of situation awareness.

5.1 Cloud Server Management and SDN-Based Wifi Handover
In our first experiment, we compared REACT with the well-known Rainbow framework [31] in
terms of development effort, performance, and features. The Rainbow framework uses software
architectures and a reusable infrastructure to support self-adaptation of software systems, with
components implementing each aspect of the MAPE-K loop. The adaptation manager, on receiving
the adaptation trigger, chooses the “best” adaption plan — on the basis of stakeholder utility prefer-
ences and the current state of the system, as reflected in the models — to execute, and passes it
on to the strategy executor, which executes the strategy on the target system via effectors. The
underlying decision making model is based on decision theory and utility [20]. As a framework,
Rainbow can be customized to support self-adaptation for a wide variety of system types. Further-
more, the flexibility of the framework has enabled not only the multi-object trade-off selection of
strategies among competing objectives that is embodied in Stitch, but has also supported research
into online adaptation planning [13], predictive proactive adaptation [45], and human-machine
cooperation [14]. For this first evaluation, we used the SEAMS exemplar SWIM (Simulator for Web
Infrastructure and Management) [46], which represents a cloud system.

In the second experiment, we showed REACT’s focus on communication systems in a real-world
SDN-based use case adding adaptive behavior to an underlay network. In this second case, a car
receives a live stream from a streaming server via a wireless network connection. With each
handover between the wireless network towers along the road, the user in the car experiences
packet loss. The goal is to improve the quality of experience byminimizing the packet loss during the
handover using SDN as foundation. In the following, we summarize the results of the evaluations
of REACT’s development effort, performance, and capabilities in comparison to the Rainbow
framework and the applicability of REACT in the real-world SDN-based communication system.
For the full details, the interested reader is referred to [51].
RQ1.1: How much development effort is required for REACT compared to the state of the art?
As far as development effort is concerned, two metrics influence the domain expert’s experience:

the lines of code (SLOC) required to achieve self-adaptivity and the number of different programming
languages, tools, and technologies she needs to be familiar with. Both metrics apply to i) specifying
the adaptive behavior and ii) implementing the interfaces to SWIM.
We observed that specifying the adaptive behavior with REACT requires considerably fewer

SLOC. The domain expert has to write 152 SLOC in 2 files with clear responsibilities. To achieve
the same behavior with Rainbow, the domain expert has to write 593 SLOC in 6 different files using
various languages. Next, we assessed the development effort for the interface implementation. We
could show that REACT requires 200 SLOC and Rainbow requires 204 SLOC. However, REACT
requires fewer (configuration) files for setting up the connection. In addition, due to its language-
independent interfaces, domain experts can use their preferred language. We acknowledge that
SLOC as a metric might have different shortcoming, however, it is frequently applied as a metric to
provide an estimation of the development effort (e.g., in [20, 38, 67]).
RQ1.2: How well performs REACT compared to the state of the art?
REACT considerably outperforms Rainbow in themonitoring and analyzing phase. Since Rainbow

holds an exact architecture model of the target system, it updates the model when new sensor data
is available, periodically checks for problems including an analysis where the problem is located
in the model, and triggers an adaptation. This design choice thus allows a more complex analysis
of the target system architecture at the cost of slower adaptation. The total execution time of an

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:16 M. Pfannemüller et al.

adaptation cycle in REACT is determined to a very high degree by the planner component. This is
not surprising, as the planner executes Chocosolver to find a valid model instance. Clafer itself
scales well with increasing problem size even with models of several thousand Clafers [6, p. 84]. In
Rainbow, the complex problem analysis in the monitoring and analyzing component accelerates
planning. The planner only uses the utility function and expected outcomes for selecting one of
the specified strategies instead of running a solver. In total, REACT’s average adaptation cycle
execution requires 84ms in comparison to 215ms in Rainbow. Thus, we argue that REACT is
well-applicable in scenarios where fast adaptation is required.
RQ1.3: How differs REACT and Rainbow in terms of capabilities?

Rainbow has its strengths in more in-depth analysis using its architecture model and a less
complex planning phase as a result. In addition, it works utility-based with the possibility to
weight optimization goals, which may considerably reduce a domain expert’s effort in scenarios
with multiple goals. REACT, however, offers runtime modifications of the adaptation behavior,
decentralized control, and multi-language support. Accordingly, if there is the need for weighted
optimization and a central deployment without too strict timing requirements, Rainbow is a
good choice. If there is no need for weighted optimization, and the requirement for decentralized
deployments and fast execution, REACT is a good candidate.
RQ2: Can REACT be implemented and used effectively in a real-world communication system?

In [51] we could show that REACT can be applied effectively in a real-world communication
system within an SDN-based Wifi handover scenario. In addition, REACT makes it possible to
efficiently change the behavior of the SDN controller by changing the adaptation options specification.
It further allows to port the specified behavior to different SDN controllers by only implementing
the effector interface and sending sensor data accordingly. Thus, we achieve portability of the
specified behavior which is not available in SDN in general, where each SDN controller requires
specific SDN applications with different interfaces to the controller for applying a certain behavior
in the network.

5.2 Proactive Adaptation
In the third experiment, we apply proactive adaptation with REACT in a smart grid scenarioas
prediction and, resulting, proactive adaptation is an important aspect for situation awareness [25].
The smart grid consists of multiple households that consume power and multiple power sources
that produce the same. The goal of the smart grid is to be self-sufficient. If the energy consumers
more power than available, the required power is taken from the general power lines outside of the
smart grid. Analogously, excess power is given away to the surrounding power lines. A domain
expert uses REACT to implement adaptive behavior in the smart grid with two goals. First, the
smart grid should activate at least as many power sources as needed to fulfill the current power
demand. This is the primary goal. Second, the production of excess power — by activating too
many power sources — should be kept at a minimum if possible.

We simulate the scenario with the Python-based smart grid simulator Mosaik8. The simulation
includes 10 households, which consume power based on realistic usage profiles. Additionally, 40
power sources produce power. Immediately after activating the power sources, they produce power
at a constant rate. Each simulation run simulates a time period of two weeks in steps of 15 minutes.
We execute 30 runs with different household power profiles, each once with reactive adaptation
and once with proactive adaptation.

8https://mosaik.offis.de/

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://mosaik.offis.de/

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:17

Additionally to a reactive adaptation mechanism, we implement proactive adaptation based
on REACT’s context management module as described in Section 4.2. We connect REACT to
Telescope [75] — an R-based software for univariate time-series forecasting — for predicting the
future power consumption. Telescope uses the data of the first week for predicting the second
week. The adaptation options specification in Clafer activates power sources based on the currently
required power, the number of already running power sources, and a predicted power requirement
for the next simulation step. When applying reactive adaptation, this prediction value is not used.
The horizon of Telescope is set to 1, i.e., only the power consumption in the following simulation
step — the next 15 minutes — is predicted.
RQ3.1: How improve system performance when applying proactive adaptations using REACT?
Figure 6 (a) compares the average number of overloads for reactive and proactive adaptation. An

overload occurs if the power production in the smart grid is lower than the power consumption.
We observe that proactive adaptation with REACT is able to decrease the number of overloads from
230 to 203 on average in comparison to reactive adaptation. Figure 6 (b) shows the excess power
produced in the smart grid. Since activating power sources increases the production step-wise
and not continuously, proactive adaptation leads to more excess power. This, however, is the
desired behavior, as overloads are dangerous for grid stability and require buying additional energy
from outside of the smart grid. We therefore conclude that proactive adaptation with REACT and
Telescope is able to anticipate increases in power consumption and to activate power sources
accordingly. This not only helps to improve the stability of the grid but also contributes to its
resilience.
RQ3.2: How is proactive adaptation related to situation awareness?
According to [25], prediction is an important requirement for situation awareness, i.e., the

requirement to foresee changes in the situation and react accordingly, e.g., through proactive
adaptation. However, our evaluation shows a second facet in the relation of situation awareness
and proactive adaptation. Figure 7 depicts an excerpt of an exemplary simulation run. The first five
hours of the excerpt show the strengths of situation awareness: Through prediction of the new
demand (i.e., the new situation) and proactive adaptation, the production is increased in advance to
avoid overloads. However, sudden peaks in the power consumption — as shown between 7:45 and
8:15 — are difficult to predict and provide an interesting example that the relation between situation
awareness and proactive adaptation is bi-directional. When integrating proactive adaptation,
the reliability of the prediction/forecasts are an important aspect. If those are not reliable for a
specific situation, reactive adaptation might be beneficial as the best known adaptation for the
situation is performed rather than applying an adaptation for a situation that might not happen and
potentially decreases system performance even stronger as a reactive, delayed adaptation would
impact performance. Further, reactive adaptation is required as backup for unknown situation. For
the smart grid scenario, the current situation of Corona lockdowns would be such an example,
because its creates completely different situations — people stay at home at times when they would
be usually at work / school — that the prediction/forecasting framework did not encounter and
hence was not able to learn those patterns. Consequently, it is important to integrate a situation-
aware choice whether to apply proactive or reactive adaptation, depending on the reliability of the
prediction of the future situation.

5.3 Self-Improvement with Multiple REACT-Based Feedback Loops
This section applies self-improvement with REACT by using multiple MAPE-K feedback loops
in one use case. In this experiment, REACT adapts a cloud server deployment providing a web
application. This experiment again uses SWIM [46], which offers a reproducible way for evaluating

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:18 M. Pfannemüller et al.

Reactive Proactive
150

200

250

#
 O

ve
rlo

ad
s

(a)

Reactive Proactive

600

700

800

900

Po
we

r D
elt

a
in

 W
at

ts

(b)

Fig. 6. Average number of overloaded simulation steps (a) and the average power delta (b) of the reactive and
the proactive approach.

00
:0

0:
00

00
:1

5:
00

00
:3

0:
00

00
:4

5:
00

01
:0

0:
00

01
:1

5:
00

01
:3

0:
00

01
:4

5:
00

02
:0

0:
00

02
:1

5:
00

02
:3

0:
00

02
:4

5:
00

03
:0

0:
00

03
:1

5:
00

03
:3

0:
00

03
:4

5:
00

04
:0

0:
00

04
:1

5:
00

04
:3

0:
00

04
:4

5:
00

05
:0

0:
00

05
:1

5:
00

05
:3

0:
00

05
:4

5:
00

06
:0

0:
00

06
:1

5:
00

06
:3

0:
00

06
:4

5:
00

07
:0

0:
00

07
:1

5:
00

07
:3

0:
00

07
:4

5:
00

08
:0

0:
00

08
:1

5:
00

08
:3

0:
00

08
:4

5:
00

09
:0

0:
00

0
2,500
5,000
7,500

10,000
12,500
15,000
17,500
20,000

W
at

ts Consumption
Production Reactive
Production Proactive

Fig. 7. Excerpt of the timeline of an exemplary run of the proactivity evaluation.

adaptation logics in a web server environment. It is a simulation environment based on OMNeT++.
The SWIM exemplar consists of multiple simulated web servers connected to a round-robin load
balancer. The load balancer distributes simulated requests and the corresponding server simulates
the execution. Each web server response can contain optional content (e.g., advertisements) which
increases the response time but also leads to additional revenue for the web site operator. The overall
goal of the system is thus continuously reaching a fixed response time goal, while maximizing the
revenue with the optional content and minimizing the cost for the servers. Accordingly, there are
two ways of adapting the running system: 1) Adding or removing servers, and 2) controlling the
number of responses with optional content.
Experimental Setup:We deploy three MAPE-K feedback loops with REACT. The first feedback
loop uses the original reasoning approach that solves the CSP (cp. Section 3). This approach applies
Chocosolver [54]. The other two feedback loops use the CFM-based reasoning approach introduced
in Section 4.3. The second loop plans adaptations with the SAT4J [11] solver for boolean satisfiability
problems whereas the third loop uses the CPLEX9 solver for MILP problems.
In the scenario, the 30 minute ClarkNet [23] trace provided with SWIM is used. Every run is

repeated 20 times, and the context of the system is fetched every 10 seconds. We measure the
average planning time, the standard deviation of the planning time, as well as the average utility.
The utility is provided by SWIM and describes the quality of the adaptation decisions.

We perform two experiments. First, we use a basic problem space specification that can be solved
by all three reasoning approaches. This ensures that the different capabilities in terms of problem
specification do not have an influence on the results. Second, we use three different problem
space specifications that exhaust the respective capabilities of the solvers. In this experiment, the
MILP- and CSP-based reasoning approaches are able to directly plan the absolute dimmer value
9http://www.ibm.com/analytics/cplex-optimizer

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

http://www.ibm.com/analytics/cplex-optimizer

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:19

and number of servers to start or stop. The specification for the SAT-based reasoning approaches
remains the same.

This section answers the following research question:
RQ4: Is self-improvement with REACT able to combine the advantages of several reasoning approaches
with regards to adaptation speed, effectiveness, and expressiveness of the specification?
Figure 8a shows the results of the first experiment with the same (simplified) specification

for all three feedback loops as well as the full specifications in comparison. Figure 8b shows the
runtimes of the planners. We observe that the SAT-based reasoning approach leads to the fastest
adaptations. It is 10% faster than the MILP-based planner and 73% faster than the CSP-based
planner. As far as the quality of the adaptations is concerned, we observe only minor differences.
The SAT-based approach leads to the highest utility comparing the simplified cases with it. We
argue that the faster adaptation is the reason for this. With the SAT-based planner, the system
reacts more promptly to changes in the load. Next, we look at the results of the second experiment
with different specifications for all three feedback loops. These specifications exploit the different
capabilities of the solvers in terms of expressiveness. The MILP-based approach needs considerably
more time compared to the results from the first experiment. The CSP-based approach, however,
only requires additional 5.5ms in this experiment.
Figure 8b combines the results of the two experiments. The advanced modeling capabilities in

the MILP- and CSP-based feedback loops considerably improve the quality of the adaptations.
Answering RQ4, we therefore conclude that there is a tradeoff between planning time and

adaptation quality. If fast adaptations are required, employing a SAT solver or a MILP solver with
a restricted SAT-based specification is possibly the better choice. This, however, leads to worse
adaptation decisions. Thus, it is beneficial to choose the reasoning approach based on the current
situationand the system objectives. REACT-ION’s context management module supports situation
awareness and self-improvement. It is even possible to use multiple loops simultaneously, e. g.,
to get a result as fast as possible, and, simultaneously, run in the background another solver that
tries to identify a better solution. However, the integration of many feedback loops could lead to
conflicts. Hence, selecting and handling multiple feedback loops is a field for future research.

CFM-Based
(SAT)

CFM-Based
(MILP, Simplified)

CSP-Based ´
(Simplified)

CFM-Based
(MILP)

CSP-Based
1500

2000

2500

3000

3500

4000

A
ve

ra
ge

 u
ti
lit

y

(a)

CFM-Based
(SAT)

CFM-Based
(ILP, Simplified)

CSP-Based
(Simplified)

CFM-Based
(ILP)

CSP-Based
0

10

20

30

40

50

60

70

80

P
la

nn
er

 R
un

ti
m

e
in

 m
s

(b)

Fig. 8. Average utility per feedback loop type (a) and according average planning times (b).

5.4 Threats to Validity
We identified the following threats to validity for your evalaution results. In the evaluation, we
measure SLOC and the number of different languages to show REACT’s low development effort for
domain experts. Even though SLOC are frequently used as a metric (e.g., in [20, 38, 67]), a future
user study with domain experts who apply REACT in different scenarios would strengthen validity.

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

111:20 M. Pfannemüller et al.

In the second experiment, we adapt an underlay network with REACT, showing its capabilities
for decentralized control, distributed deployment, and multi-sensor support. However, we omit
an analysis of the sclability of our approach w.r.t. (i) large Clafer and UML models and (ii) larger
system sizes. This work is further limited to a comparison with Rainbow and to two use cases only.
Future research may include a comparison to other frameworks such as SASSY [44] or StarMX [4]
in additional use cases from the communication systems domain. Considering situation awareness,
only Telescope [75] as external prediction approach has been applied and we omit a comparison of
several approaches for predition. Next, we plan to investigate possibilities to provide a standardized
proactivity solution as part of REACT itself. Also, we focus in this work on compositional self-
improvement. As future work, we aim at evaluating also other situation-aware self-improvement
possibilities besides compositional adaptations. This includes parametric adaptation, i. e., changing
the models autonomously as well as deployment changes of the adaptation logic. These deployment
changes could, e. g., result in moving the computationally intensive planner to faster machines at
runtime in high-load situations.

6 CONCLUSION
In this paper, we present REACT-ION, a reusable runtime environment for model-based adaptations
in communication systems that supports situation awareness. REACT-ION is an extension of
REACT, which integrates a MAPE-K feedback loop that leverages a Clafer and a UML model
provided by the domain expert to autonomously achieve self-adaptivity. Due to its support for
multiple programming languages, decentralized control, distributed deployments, and runtime
modifications, REACT is well-applicable for adapting overlay and underlay networks. We compared
REACT to the well-known Rainbow framework, showing that it is easy-to-use for domain experts
and suitable for use cases that require fast adaptations. As extensions, this paper presents a context
management module, which can be used for providing situation awareness capabilities, executing
proactive adaptations, and self-improvement. We applied proactive adaptations using REACT-ION
and showed the possibility to run multiple REACT-ION-based feedback loops. This capability can
be used for self-improvement by selecting a feedback loop based on the current system situation.
As future work, we plan to integrate additional interfaces that allow developers to directly

use own analyzing and planning techniques such as machine learning or a different specification
language such as Stitch [5] instead of Clafer. As verification and validation (V&V) is an important
research challenge [5, 22], we plan to add verification of dynamic properties such as runtime V&V
techniques and guarantees according to costs into REACT, e.g., using model-checking methods.
This will ensure the correctness of the models and REACT will give certain runtime guarantees.
Future work additionally includes a user study with domain experts which further investigates the
development effort. Focussing on such empirical evidence with practitioners has been identified
as general challenge for further self-adaptive systems research [71]. For prediction, we integrate
the Telescope [75] framework as external prediction approach. We plan to investigate possibilities
to provide a standardized solution for prediction/forecasts as part of REACT itself. For example,
it might be possible to integrate a recommendation system for time series forecasting (e.g., [76])
which autonomously decides the best suitable algorithm depending on the data characteristics.

ACKNOWLEDGMENT
This work has been co-funded by the German Research Foundation (DFG) as part of project A4 within CRC 1053 –MAKI. The
authors would like to thank Veronika Lesch from University of Würzburg for the initial implementation of the Java-R-Bridge.

REFERENCES
[1] Mehdi Amoui, Mahdi Derakhshanmanesh, Jürgen Ebert, and Ladan Tahvildari. 2012. Achieving dynamic adaptation

via management and interpretation of runtime models. J. Syst. Softw. 85, 12 (2012), 2720–2737. https://doi.org/10.1016/

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1016/j.jss.2012.05.033

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:21

j.jss.2012.05.033
[2] Konstantinos Angelopoulos, Vitor E. Silva Souza, and João Pimentel. 2013. Requirements and architectural approaches to

adaptive software systems: A comparative study. In Proc. SEAMS. 23–32. https://doi.org/10.1109/SEAMS.2013.6595489
[3] Michal Antkiewicz, Kacper Bak, Krzysztof Czarnecki, Zinovy Diskin, Dina Zayan, and Andrzej Wasowski. 2013.

Example-Driven Modeling using Clafer. In Proc. of MoDELS, Vol. 1104. 32–41.
[4] Reza Asadollahi, Mazeiar Salehie, and Ladan Tahvildari. 2009. StarMX: A framework for developing self-managing

Java-based systems. In Proc. of SEAMS. 58–67. https://doi.org/10.1109/SEAMS.2009.5069074
[5] B. Cheng et al. 2011. Using Models at Runtime to Address Assurance for Self-Adaptive Systems. In Models@run.time -

Foundations, Applications, and Roadmaps. Springer, 101–136. https://doi.org/10.1007/978-3-319-08915-7_4
[6] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. 2010. Feature and Meta-Models in Clafer: Mixed, Specialized,

and Coupled. In Proc. of SLE. 102–122. https://doi.org/10.1007/978-3-642-19440-5_7
[7] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and AndrzejWasowski. 2016. Clafer: unifying class

and feature modeling. Software and System Modeling 15, 3 (2016), 811–845. https://doi.org/10.1007/s10270-014-0441-1
[8] Nelly Bencomo, Robert B. France, Betty Cheng, and Uwe Aßmann (Eds.). 2014. Models@run.time - Foundations,

Applications, and Roadmaps. Springer. https://doi.org/10.1007/978-3-319-08915-7
[9] Nelly Bencomo, Paul Grace, Carlos A. Flores-Cortés, Danny Hughes, and Gordon S. Blair. 2008. Genie: supporting

the model driven development of reflective, component-based adaptive systems. In Proc. of ICSE. 811–814. https:
//doi.org/10.1145/1368088.1368207

[10] Nelly Bencomo, Peter Sawyer, Gordon S. Blair, and Paul Grace. 2008. Dynamically Adaptive Systems are Product Lines
too: Using Model-Driven Techniques to Capture Dynamic Variability of Adaptive Systems. In Proc. of SPLC). 23–32.

[11] Daniel Le Berre and Anne Parrain. 2010. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and
Computation 7, 2-3 (2010), 59–6. https://doi.org/10.3233/SAT190075

[12] Gordon S. Blair, Nelly Bencomo, and Robert B. France. 2009. Models@ run.time. IEEE Computer 42, 10 (2009), 22–27.
https://doi.org/10.1109/MC.2009.326

[13] Javier Cámara, David Garlan, Bradley R. Schmerl, and Ashutosh Pandey. 2015. Optimal planning for architecture-based
self-adaptation via model checking of stochastic games. In Proc. of SAC. 428–435. https://doi.org/10.1145/2695664.
2695680

[14] Javier Cámara, Gabriel A. Moreno, and David Garlan. 2015. Reasoning about Human Participation in Self-Adaptive
Systems. In Proc. of SEAMS. 146–156. https://doi.org/10.1109/SEAMS.2015.14

[15] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. 2003. CARISMA: Context-Aware Reflective mIddleware System
for Mobile Applications. IEEE Transactions on Software Engineering 29, 10 (2003), 929–945. https://doi.org/10.1109/
TSE.2003.1237173

[16] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci, Francesco Lo Presti, and Raffaela Mirandola.
2012. MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE Trans. Software
Eng. 38, 5 (2012), 1138–1159. https://doi.org/10.1109/TSE.2011.68

[17] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. 2008. Amodel-driven approach for developing self-adaptive
pervasive systems. Models@ runtime 8 (2008), 97–106.

[18] Marinos Charalambides, George Pavlou, Paris Flegkas, Ning Wang, and Daphné Tuncer. 2011. Managing the future
internet through intelligent in-network substrates. IEEE Network 25, 6 (2011), 34–40. https://doi.org/10.1109/MNET.
2011.6085640

[19] Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-based self-adaptation. Journal of
Systems and Software 85, 12 (2012), 2860–2875. https://doi.org/10.1016/j.jss.2012.02.060

[20] Shang-Wen Cheng. 2004. Rainbow: cost-effective software architecture-based self-adaptation. Ph.D. Dissertation. Carnegie
Mellon University.

[21] D. Weyns et al. 2010. On Patterns for Decentralized Control in Self-Adaptive Systems. In Software Engineering for
Self-Adaptive Systems II. Springer, 76–107. https://doi.org/10.1007/978-3-642-35813-5_4

[22] Rogério de Lemos et al. 2010. Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In
Software Engineering for Self-Adaptive Systems II. Springer, 1–32. https://doi.org/10.1007/978-3-642-35813-5_1

[23] John Dilley. 1996. Web server workload characterization. HP Laboratories Technical Report 24, 96-160 (dec 1996), 1–16.
https://doi.org/10.1145/233008.233034

[24] Jim Dowling and Vinny Cahill. 2001. The K-Component Architecture Meta-model for Self-Adaptive Software. In Proc.
of REFLECTION. 81–88. https://doi.org/10.1007/3-540-45429-2_6

[25] Mica R. Endsley. 1995. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors 37, 1 (1995), 32–64.
https://doi.org/10.1518/001872095779049543

[26] Clément Escoffier, Richard S. Hall, and Philippe Lalanda. 2007. iPOJO: an Extensible Service-Oriented Component
Framework. In Proc. of SCC. 474–481. https://doi.org/10.1109/SCC.2007.74

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1109/SEAMS.2013.6595489
https://doi.org/10.1109/SEAMS.2009.5069074
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-642-19440-5_7
https://doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1007/978-3-319-08915-7
https://doi.org/10.1145/1368088.1368207
https://doi.org/10.1145/1368088.1368207
https://doi.org/10.3233/SAT190075
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/2695664.2695680
https://doi.org/10.1145/2695664.2695680
https://doi.org/10.1109/SEAMS.2015.14
https://doi.org/10.1109/TSE.2003.1237173
https://doi.org/10.1109/TSE.2003.1237173
https://doi.org/10.1109/TSE.2011.68
https://doi.org/10.1109/MNET.2011.6085640
https://doi.org/10.1109/MNET.2011.6085640
https://doi.org/10.1016/j.jss.2012.02.060
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1145/233008.233034
https://doi.org/10.1007/3-540-45429-2_6
https://doi.org/10.1518/001872095779049543
https://doi.org/10.1109/SCC.2007.74

111:22 M. Pfannemüller et al.

[27] Naeem Esfahani and Sam Malek. 2010. Uncertainty in Self-Adaptive Software Systems. In Software Engineering for
Self-Adaptive Systems II (Lecture Notes in Computer Science, Vol. 7475). Springer, 214–238. https://doi.org/10.1007/978-
3-642-35813-5_9

[28] Jacqueline Floch, Svein O. Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli Gjørven. 2006. Using Architec-
ture Models for Runtime Adaptability. IEEE Software 23, 2 (2006), 62–70. https://doi.org/10.1109/MS.2006.61

[29] Erik M. Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, and Thomas Vogel. 2019. Planning as Optimization:
Dynamically Discovering Optimal Configurations for Runtime Situations. In Proc. SASO.

[30] Nadia Gámez, Lidia Fuentes, and José M. Troya. 2015. Creating Self-Adapting Mobile Systems with Dynamic Software
Product Lines. IEEE Software 32, 2 (2015), 105–112. https://doi.org/10.1109/MS.2014.24

[31] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R. Schmerl, and Peter Steenkiste. 2004. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. IEEE Computer 37, 10 (2004), 46–54. https://doi.org/
10.1109/MC.2004.175

[32] David Garlan, Daniel P. Siewiorek, Asim Smailagic, and Peter Steenkiste. 2002. Project Aura: Toward Distraction-Free
Pervasive Computing. IEEE Pervasive Computing 1, 2 (2002), 22–31. https://doi.org/10.1109/MPRV.2002.1012334

[33] Marcus Handte, Gregor Schiele, Verena Majuntke, Christian Becker, and Pedro José Marrón. 2012. 3PC: System support
for adaptive peer-to-peer pervasive computing. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 7, 1
(2012), 10:1–10:19. https://doi.org/10.1145/2168260.2168270

[34] Herman Hartmann and Tim Trew. 2008. Using Feature Diagrams with Context Variability to Model Multiple Product
Lines for Software Supply Chains. In Proceedings of the Software Product Line Conference (SPLC). IEEE, 12–21. https:
//doi.org/10.1109/SPLC.2008.15

[35] Michi Henning. 2004. A New Approach to Object-Oriented Middleware. IEEE Internet Computing 8, 1 (2004), 66–75.
https://doi.org/10.1109/MIC.2004.1260706

[36] Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.
https://doi.org/10.1109/MC.2003.1160055

[37] Christian Krupitzer, Martin Breitbach, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and Christian
Becker. 2018. A survey on engineering approaches for self-adaptive systems (extended version). https://doi.org/10.
1016/j.pmcj.2014.09.009

[38] Christian Krupitzer, Felix Maximilian Roth, Christian Becker, Markus Weckesser, Malte Lochau, and Andy Schürr.
2016. FESAS IDE: An Integrated Development Environment for Autonomic Computing. In Proc. ICAC. 15–24. https:
//doi.org/10.1109/ICAC.2016.49

[39] Christian Krupitzer, Felix Maximilian Roth, Martin Pfannemüller, and Christian Becker. 2016. Comparison of Ap-
proaches for Self-Improvement in Self-Adaptive Systems. In Proc. of ICAC. 308–314. https://doi.org/10.1109/ICAC.
2016.18

[40] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and Christian Becker. 2015. A
survey on engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17 (2015), 184–206. https:
//doi.org/10.1016/j.pmcj.2014.09.009

[41] Brian Y. Lim and Anind K. Dey. 2010. Toolkit to support intelligibility in context-aware applications. In UbiComp
(ACM International Conference Proceeding Series). ACM, 13–22. https://doi.org/10.1145/1864349.1864353

[42] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. 1995. Specifying Distributed Software Architectures. In
Proc. of ESEC. 137–153. https://doi.org/10.1007/3-540-60406-5_12

[43] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty Cheng. 2004. Composing Adaptive Software. IEEE
Computer 37, 7 (2004), 56–64. https://doi.org/10.1109/MC.2004.48

[44] Daniel A. Menascé, Hassan Gomaa, Sam Malek, and João Pedro Sousa. 2011. SASSY: A Framework for Self-Architecting
Service-Oriented Systems. IEEE Software 28, 6 (2011), 78–85. https://doi.org/10.1109/MS.2011.22

[45] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R. Schmerl. 2018. Flexible and Efficient Decision-Making
for Proactive Latency-Aware Self-Adaptation. ACM TAAS 13, 1 (2018), 3:1–3:36. https://doi.org/10.1145/3149180

[46] Gabriel A. Moreno, Bradley R. Schmerl, and David Garlan. 2018. SWIM: an exemplar for evaluation and comparison of
self-adaptation approaches for web applications. In Proc. of SEAMS. 137–143. https://doi.org/10.1145/3194133.3194163

[47] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg. 2009. Models@ Run.time to
Support Dynamic Adaptation. IEEE Computer 42, 10 (2009), 44–51. https://doi.org/10.1109/MC.2009.327

[48] P. Oreizy et al. 1999. An Architecture-Based Approach to Self-Adaptive Software. IEEE Intelligent Systems and their
Applications 14, 3 (1999), 54–62. https://doi.org/10.1109/5254.769885

[49] Janak J. Parekh, Gail E. Kaiser, Philip Gross, and Giuseppe Valetto. 2006. Retrofitting Autonomic Capabilities onto
Legacy Systems. Cluster Computing 9, 2 (2006), 141–159. https://doi.org/10.1007/s10586-006-7560-6

[50] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos. 2014. Context Aware Computing
for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials 16, 1 (2014), 414–454. https:
//doi.org/10.1109/SURV.2013.042313.00197

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1109/MS.2006.61
https://doi.org/10.1109/MS.2014.24
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MPRV.2002.1012334
https://doi.org/10.1145/2168260.2168270
https://doi.org/10.1109/SPLC.2008.15
https://doi.org/10.1109/SPLC.2008.15
https://doi.org/10.1109/MIC.2004.1260706
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1109/ICAC.2016.49
https://doi.org/10.1109/ICAC.2016.49
https://doi.org/10.1109/ICAC.2016.18
https://doi.org/10.1109/ICAC.2016.18
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1145/1864349.1864353
https://doi.org/10.1007/3-540-60406-5_12
https://doi.org/10.1109/MC.2004.48
https://doi.org/10.1109/MS.2011.22
https://doi.org/10.1145/3149180
https://doi.org/10.1145/3194133.3194163
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/5254.769885
https://doi.org/10.1007/s10586-006-7560-6
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/SURV.2013.042313.00197

REACT-ION: A Model-Based Runtime Environment for Situation-Aware Adaptations 111:23

[51] Martin Pfannemüller, Martin Breitbach, Christian Krupitzer, Markus Weckesser, Christian Becker, Bradley Schmerl,
and Andy Schürr. 2020. REACT: A Model-Based Runtime Environment for Adapting Communication Systems. In Proc.
of ACSOS. IEEE, 65–74. https://doi.org/10.1109/ACSOS49614.2020.00027

[52] Martin Pfannemüller, Christian Krupitzer, Markus Weckesser, and Christian Becker. 2017. A Dynamic Software
Product Line Approach for Adaptation Planning in Autonomic Computing Systems. In Proc. of ICAC. 247–254. https:
//doi.org/10.1109/ICAC.2017.18

[53] Thomas Preisler, Tim Dethlefs, and Wolfgang Renz. 2015. Middleware for Constructing Decentralized Control in
Self-Organizing Systems. In Proc. of ICAC. 325–330. https://doi.org/10.1109/ICAC.2015.56

[54] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. 2017. Choco Documentation. TASC - LS2N CNRS UMR
6241, COSLING S.A.S. http://www.choco-solver.org

[55] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Campbell, and Klara Nahrstedt.
2002. A Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing 1, 4 (2002), 74–83. https://doi.org/10.
1109/MPRV.2002.1158281

[56] S. Malek et al. 2010. An architecture-driven software mobility framework. J. Syst. Softw. 83, 6 (2010), 972–989.
https://doi.org/10.1016/j.jss.2009.11.003

[57] S. O. Hallsteinsen et al. 2012. A development framework and methodology for self-adapting applications in ubiquitous
computing environments. Journal of Systems and Software 85, 12 (2012), 2840–2859. https://doi.org/10.1016/j.jss.2012.
07.052

[58] Karsten Saller, Malte Lochau, and Ingo Reimund. 2013. Context-aware DSPLs: model-based runtime adaptation
for resource-constrained systems. In Proceedings of the Software Product Line Conference (SPLC). ACM, 106–113.
https://doi.org/10.1145/2499777.2500716

[59] Thomas Schnabel, Markus Weckesser, Roland Kluge, Malte Lochau, and Andy Schürr. 2016. CardyGAn: Tool Support
for Cardinality-based Feature Models. In Proc. of VaMoS, 2016. ACM, 33–40. https://doi.org/10.1145/2866614.2866619

[60] Omer Berat Sezer, Erdogan Dogdu, and Ahmet Murat Özbayoglu. 2018. Context-Aware Computing, Learning, and Big
Data in Internet of Things: A Survey. IEEE Internet Things J. 5, 1 (2018), 1–27. https://doi.org/10.1109/JIOT.2017.2773600

[61] Sylvain Sicard, Fabienne Boyer, and Noel De Palma. 2008. Using components for architecture-based management: the
self-repair case. In Proc. of ICSE. 101–110. https://doi.org/10.1145/1368088.1368103

[62] Vítor Estêvão Silva Souza. 2012. Requirements-based Software System Adaptation. Ph.D. Dissertation. University of
Trento, Italy.

[63] Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady J. Garvin, and Justin Firestone. 2014. Beyond the rainbow:
self-adaptive failure avoidance in configurable systems. In Proc. of SIGSOFT. 377–388. https://doi.org/10.1145/2635868.
2635915

[64] Sven Tomforde. 2011. An architectural framework for self-configuration and self-improvement at runtime. Ph.D.
Dissertation. University of Hannover. https://doi.org/10.15488/7766

[65] Sven Tomforde and Christian Müller-Schloer. 2013. Incremental Design of Adaptive Systems. J. Ambient Intell. Smart
Environ. 6, 2 (2013), 179–198. https://doi.org/10.3233/AIS-140252

[66] Sebastian VanSyckel, Dominik Schäfer, Gregor Schiele, and Christian Becker. 2013. Configuration Management for
Proactive Adaptation in Pervasive Environments. In Proceedings of the International Conference on Self-Adaptive and
Self-Organizing Systems (SASO). IEEE, 131–140. https://doi.org/10.1109/SASO.2013.28

[67] Thomas Vogel. 2018. Model-Driven Engineering of Self-Adaptive Software. Ph.D. Dissertation. University of Potsdam.
[68] Thomas Vogel and Holger Giese. 2013. Model-driven engineering of adaptation engines for self-adaptive software :

executable runtime megamodels. Technical Report.
[69] Thomas Vogel and Holger Giese. 2014. Model-Driven Engineering of Self-Adaptive Software with EUREMA. ACM

Transactions on Autonomous and Adaptive Systems (TAAS) 8, 4 (2014), 18:1–18:33. https://doi.org/10.1145/2555612
[70] Markus Weckesser, Malte Lochau, Michael Ries, and Andy Schürr. 2018. Mathematical Programming for Anomaly

Analysis of Clafer Models. In Proc. of MODELS. 34–44. https://doi.org/10.1145/3239372.3239398
[71] Danny Weyns. 2019. Software Engineering of Self-adaptive Systems. In Handbook of Software Engineering. Springer,

399–443. https://doi.org/10.1007/978-3-030-00262-6_11
[72] DannyWeyns and M. Usman Iftikhar. 2019. ActivFORMS: A Model-Based Approach to Engineer Self-Adaptive Systems.

CoRR abs/1908.11179 (2019). arXiv:1908.11179
[73] Juan Ye, Simon Dobson, and Susan McKeever. 2012. Situation identification techniques in pervasive computing: A

review. Pervasive Mob. Comput. 8, 1 (2012), 36–66. https://doi.org/10.1016/j.pmcj.2011.01.004
[74] Edith Zavala, Xavier Franch, Jordi Marco, and Christian Berger. 2020. HAFLoop: An architecture for supporting

Highly Adaptive Feedback Loops in self-adaptive systems. Future Gener. Comput. Syst. 105 (2020), 607–630. https:
//doi.org/10.1016/j.future.2019.12.026

[75] Marwin Züfle, André Bauer, Nikolas Herbst, Valentin Curtef, and Samuel Kounev. 2017. Telescope: A Hybrid Forecast
Method for Univariate Time Series. In Proc. of ITISE.

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1109/ACSOS49614.2020.00027
https://doi.org/10.1109/ICAC.2017.18
https://doi.org/10.1109/ICAC.2017.18
https://doi.org/10.1109/ICAC.2015.56
http://www.choco-solver.org
https://doi.org/10.1109/MPRV.2002.1158281
https://doi.org/10.1109/MPRV.2002.1158281
https://doi.org/10.1016/j.jss.2009.11.003
https://doi.org/10.1016/j.jss.2012.07.052
https://doi.org/10.1016/j.jss.2012.07.052
https://doi.org/10.1145/2499777.2500716
https://doi.org/10.1145/2866614.2866619
https://doi.org/10.1109/JIOT.2017.2773600
https://doi.org/10.1145/1368088.1368103
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.15488/7766
https://doi.org/10.3233/AIS-140252
https://doi.org/10.1109/SASO.2013.28
https://doi.org/10.1145/2555612
https://doi.org/10.1145/3239372.3239398
https://doi.org/10.1007/978-3-030-00262-6_11
https://arxiv.org/abs/1908.11179
https://doi.org/10.1016/j.pmcj.2011.01.004
https://doi.org/10.1016/j.future.2019.12.026
https://doi.org/10.1016/j.future.2019.12.026

111:24 M. Pfannemüller et al.

[76] Marwin Züfle, André Bauer, Veronika Lesch, Christian Krupitzer, Nikolas Herbst, Samuel Kounev, and Valentin Curtef.
2019. Autonomic Forecasting Method Selection: Examination and Ways Ahead. In Proc. of ICAC. IEEE, 167–176.
https://doi.org/10.1109/ICAC.2019.00028

ACM Trans. Autonom. Adapt. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1109/ICAC.2019.00028

	Abstract
	1 Introduction
	2 Related Work
	3 REACT- A Reusable Runtime Environment for Adaptive Communication Systems
	3.1 REACT's Architecture
	3.2 Enabling Self-Adaptivity with REACT

	4 REACT-ION: Situation Awareness with REACT
	4.1 Context Management Module
	4.2 Proactive Adaptation with REACT-ION
	4.3 Self-Improvement with REACT-ION

	5 Evaluation
	5.1 Cloud Server Management and SDN-Based Wifi Handover
	5.2 Proactive Adaptation
	5.3 Self-Improvement with Multiple REACT-Based Feedback Loops
	5.4 Threats to Validity

	6 Conclusion
	References

