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Abstract: The food industry faces many challenges, including the need to feed a growing popu-1

lation, food loss and waste, and inefficient production systems. To cope with those challenges,2

digital twins that create a digital representation of physical entities by integrating real-time and3

real-world data seems to be a promising approach. This paper aims to provide an overview of4

digital twin applications in the food industry and analyze their challenges and potentials. There-5

fore, a literature review is executed to examine digital twin applications in the food supply chain.6

The applications found are classified according to a taxonomy and key elements to implement7

digital twins are identified. Further, the challenges and potentials of digital twin applications8

in the food industry are discussed. The survey revealed that the application of digital twins9

mainly targets the production (agriculture) or the food processing stage. Nearly all applications10

are used for monitoring and many for prediction. However, only a small amount focuses on the11

integration in systems for autonomous control or providing recommendations to humans. The12

main challenges of implementing digital twins are combining multidisciplinary knowledge and13

providing enough data. Nevertheless, digital twins provide huge potentials, e.g., in determining14

food quality, traceability, or designing personalized foods.15

Keywords: digital twins; food industry; food supply chain; cyber-physical systems; sensors;16

Internet-of-Things; survey17

1. Introduction18

With the evolution and digitalization towards Industry 4.0, the concept of creating19

digital copies of physical counterparts received entry to the industry [1]. In particular,20

the food industry is of special interest because it requires a high efficient use of the21

available resources [2]. Over time, food production systems have evolved alongside22

technological innovations, allowing for increased production, greater product variety,23

more resilient food stocks, and increased international trade. Yet, despite these advances,24

food systems around the world continue to face unprecedented challenges. Challenges25

such as climate change, pressure to feed a growing global population, and persistent26

global food waste pose significant threats to current food systems. In addition, there are27

growing societal demands for greater food provenance, traceability, and sustainability28

within the food system [3].29

A key element of Industry 4.0 is the digital twin: a virtual model of a product30

or process created with data collected by sensors that enables simulations or real-time31

analyses of the status of production [1,4]. The use of digital twins seems beneficial in food32

processing for various reasons. The Covid-19 pandemic demonstrated the vulnerability33

of food supply resilience [5]. To ensure the supply of foods, production processes must34

allow high flexibility and adaptivity [6]. Furthermore, product quality is influenced by35

different quality levels of input materials. Especially in the case of seasonal fluctuations36
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impacting raw material quality, an adjustment of parameters in the production process37

is essential. Introduction processes of new products could be simplified by a digital38

twin of already existing products. The digital twin is able to learn the correct process39

parameters for production and is used as the knowledge base within a self-adaptive40

software system [7]. However, a digital twin of food production has additional specific41

requirements compared to digital twins of the production of material goods [8]. Due42

to the variability of raw materials, these cannot be based only on the processing steps43

but must also take into account the chemical, physical, or (micro)biological properties44

of the food. Further, the technology can be applied to create a detailed digital model of45

the supply chain that integrates real-time and real-world data to respond to unexpected46

events and uncertainty within the supply chain.47

This work aims to provide an overview of digital twin applications in the food48

industry and analyze their challenges and potentials. Therefore, we first present a49

taxonomy to differentiate underlying technologies and better understand the intended50

use of each digital twin. Second, a survey is executed to examine digital twin applications51

in the food supply chain (FSC). We target the FSC as it provides a link between all the52

key activities and processes involved in bringing a specific food product to market [9].53

To meet these unprecedented challenges, FSCs and corresponding actors are turning to54

modern technology for assistance [10]. We classify the found applications of digital twins55

according to our taxonomy. Third, we investigate the key elements to implement digital56

twins in the FSC. Fourth, since the concept of digital twins is still young, we discuss57

the potentials of applying them in the food sector. Finally, we discuss the challenges of58

applying digital twins in the food industry. In summary, this paper contributes to the59

body of research by providing the following scopes:60

• Classification of digital twins in the food sector.61

• Overview of the application of digital twins in the food industry.62

• Definition of the key elements for implementing a digital twin.63

• Analysis of the potential of digital twins in the food industry.64

• Description of challenges of applying digital twins in the food industry.65

The remainder of the paper is structured as follows. Next, Section 2 explains several66

fundamentals related to the FSC, the digitalization of the food industry, and provides67

a definition of digital twins. Then, Section 3 presents the methodological approach for68

the literature review. Subsequently, Section 4 evaluates the literature review results and69

summarizes the key elements for implementing digital twins. We discuss the potentials70

and challenges of digital twins and their implementation in the food supply chain in71

Section 5. In Section 6, we discriminate this work against other publications in the field.72

Finally, Section 7 concludes this paper with a summary of our results.73

2. Background74

In the following Section 2.1, we first describe the underlying concept of the FSC,75

which we use to differentiate the stages in the food industry and to classify the digital76

twin applications in Section 4. Further, the role of digitalization in the food industry77

as well as related concepts are described in Section 2.2. Finally, Section 2.3 provides a78

definition of digital twins.79

2.1. The Food Supply Chain80

A supply chain (SC) is a network of actors structured around activities and pro-81

cesses that aim to satisfy given consumer demand by bringing products or services to82

market [11]. This network includes feedback and circular economy aspects, e.g., for83

sustainability reasons as the recycling of materials [12]. The actors within the SC are84

linked through upstream or downstream processes and activities that produce value in85

the form of finished products or services [11]. In the same sense, a FSC encompasses all86

activities involved in the creation and transformation of raw materials into food products87
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Production Supply Processing Distribution Retail Consumption

Figure 1. A simplified structure of the food supply chain (based on [10]) including the actors used to classify the digital twin
applications within the scope of this work. The structure does not show any circular flows or side chains of by-, side-, or co-products,
which would result in a value network rather than a straight-forwarded chain.

as well as their retail and consumption [10]. FSCs do differ significantly from other SCs88

due to the complexity of producing, transporting, and managing food products [13].89

Although it is important to consider not only the primary flow but also the tangen-90

tial and secondary flows that are contained within the FSC, as these are opportunities to91

reduce food loss and waste through reuse and recycling [12], we focus on a simplified,92

linear, and straight forwarded structure of the FSC. This is sufficient for this survey since93

the focus is on single activities of the FSC that are present identically in the simplified94

FSC as well as in a circular view. Figure 1 provides an overview of the FSC and the95

main actors, to which the digital twin applications will be assigned. Commonly, the96

FSC begins with production, which is usually an agricultural farm, continues with supply,97

processing, distribution, and retail and ends with the consumption.98

Worth mentioning is that the stages could be thereby divided into several pro-99

cessing or transportation sub-entities: For instance, Shoji et al. [14] investigate the cold100

chain of fruits and vegetables from a (farm to) packhouse to distribution to the retailer.101

The authors divide the transportation steps between the supply from packhouse to102

distribution center and from distribution center to the retailer. In our understanding,103

the packhouse would be part of the processing stage and both, the transportation and the104

distribution would be summarized as distribution.105

It is crucial for SCs to be designed with consideration for uncertainty and risk,106

as mitigation measures and solutions must be developed to prevent disruptions to107

the SC [9]. Those disruptions impact the SC’s regular flow and affect the other actors108

directly [15]. In particular, the most frequent FSC disruptions are human error, commu-109

nication misunderstandings, organizational process errors, and quality problems with110

goods received [16]. Consequently, disruptions may result in negative effects to the final111

product [9] regarding sustainability, safety, and quality [13].112

Additionally, several challenges in the FSC occur during different stages [17]: the113

production estimation and optimization in the production stage, including the crop114

management and security and the livestock control; the production planning in the115

processing stage, regarding the post-harvest loss as well as demand prediction; the116

distribution, concerning route planning, prediction of SC risks and disruptions, and117

shelf-life prediction; and the consumption, representing consumer behavior, their dietary118

behavior, food loss and waste, or the prediction of the daily demand.119

2.2. Industry 4.0 and Related Concepts120

“Industry 4.0” is associated with the fourth industrial revolution. It combines121

technologies such as cyber-physical systems (CPSs), Internet of Things (IoT), and cloud122

computing. While the term Industry 4.0 is primarily used in Europe, the similar concept123

“Industrial Internet of Things” (IIoT) mainly used in the US describes advances in big data,124

cloud computing, and networking of machinery and systems in the industrial sector [18].125

Based on CPSs and IoT, in Industry 4.0 manufacturing processes including logistics (i.e.,126

SC management), services, and maintenance are efficiently synchronized [19]. Hence,127

Industry 4.0 does not focus on a single process or technology but integrates all processes128

resulting in a highly flexible and integrated optimized manufacturing process. The129

complete implementation of Industry 4.0 or IIoT would result in the smart factory: an130
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integrated production process that is entirely self-organizing by the connected machines131

and intelligent software without any human interaction [20].132

Further, modern FSCs make increasingly use of integrated information and com-133

munication technology (ICT) systems to assist with mitigating against uncertainty and134

risk, process optimization, and numerous other applications [11]. In addition, ICT sys-135

tems are of particular interest for traceability and decision-making functions within the136

FSC [21]. Traceability is important to identify quality and safety concerns and to provide137

the food provenance to the consumer and authorities [13]. As described by Zhong138

et al. [9], traceability systems in FSCs vary greatly depending on region, government139

regulations, and digitalization of the FSC. ICT systems as digital twins are able to assist140

with decision-making, collaboration, scheduling and planning, logistics management,141

and warehouse management within the FSC [22].142

2.3. A Definition of Digital Twins143

The concept of digital twins first came up during NASA’s Apollo 13 mission in144

1970 as the ground team used simulators to provide solutions to the spacecraft crew145

for landing them safely [23]. The term “digital twin” was first used and defined in146

2003 [24]. This concept contains a physical object, a virtual object, and connects data147

and information from both. NASA formalized the description of digital twins in 2012148

and forecasted its potential in the aerospace sector [25]. Here, the digital twin is defined149

as a multiphysics and multiscale simulation of a vehicle or system, which uses the150

best physical models, sensor data, and history, resulting in a mirror of the physical151

counterpart. The discovery that digital twins might be used in a variety of industries152

other than aerospace accelerated its development [26]; especially, it is an important153

concept for Industry 4.0 and IIoT.154

In this paper, we follow the definition of a digital twin provided by the CIRP155

Encyclopedia of Production Engineering [27]:156

A digital twin is a digital representation of an active unique product (real device, object,157

machine, service, or intangible asset) or unique product-service system (a system158

consisting of a product and a related service) that comprises its selected characteristics,159

properties, conditions, and behaviors by means of models, information, and data within160

a single or even across multiple life cycle phases.161

Therefore, a digital twin virtually represents its real-world counterpart, containing162

all its essential properties [8]. It is based on real-world comprehensive data measure-163

ments, which form the digital profile of the physical object or process. Consequently, a164

digital twin is connected to the real-world object through a continuously updated data165

flow [28]. Further, the digital twin is able to simulate the relevant processes and kinetics166

accurately [8]. In this sense, a digital twin may be seen as an ever-evolving digital profile167

of the past, current, and even future behavior of a process or a physical object and allow168

to predict uncertainty in the process steps [28].169

Defraeye et al. [8] define three common principles to digital twins: Firstly, it must170

contain all the necessary components and material properties of what it is representing.171

Secondly, it can reliably and accurately simulate all relevant processes through the172

product life cycle. Finally, the digital twin should be connected with its real-world173

counterpart, as this differs a digital twin from simpler models. Communication is174

preferred to be realized in real-time, but the data could also flow offline.175

This is in accordance with Jones et al. [29], who define twinning as the synchroniza-176

tion of the states of the physical and virtual entities. Additionally, the virtual model177

consists of high fidelity. Bottani et al. [30] expand this, explaining that a digital twin is178

more than the representation of the physical counterpart since the goal of a digital twin179

is to replicate all behaviors and relationships of a system and its environment.180

Further, five technological components enable digital twins [28]: sensors, integration181

capabilities, real-world aggregated data, analytical techniques, and actuators. Those182

technologies are required to aggregate the different available data sources (mainly related183
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Figure 2. Digital (food) twin basic framework within the context of dairy processing

to the product and the process) into one comprehensible model of the digital twin as well184

as support the prediction or analysis with a digital twin. Figure 2 presents the diversity185

of potential data resources for a digital (food) twin.186

A concept closely related to digital twins are CPSs [31,32]. While a digital twin is a187

digital copy of a product or physical system with the intention of performing real-time188

optimization, a CPS merges computational and physical processes to seamlessly support189

humans with intelligence when using machines [33]. CPSs often include digital twins as190

a base for their decision-making processes [34–36].191

3. Methodology192

The methodology for the survey integrates methods from the guidelines of Webster193

and Watson [37] for a structured literature review and Petersen et al. [38] for systematic194

mapping studies. The research is based on the steps shown in Figure 3. In the beginning,195

we framed our aim in the form of research questions. We defined exclusion and inclusion196

criteria and performed keyword-based searches for filtering the articles based on their197

titles and abstracts. The search method was adapted from [37] to cover a wide range of198

publications with regards to regions, fields, and publishers. After identifying the set of199

possible relevant publications, a relevance analysis based on a full paper screening was200

performed. Subsequently, descriptions and properties of the digital twin applications as201

well as bibliography data have been extracted and classified as proposed in [38]. In the202

following, we describe these steps in detail.203

I II III IV

TITLE
_____________
____

Abstract. ____
_____________
________

_____________
__________

• Analyze 
relevance with 
full paper 
screening

• 38 highly 
relevant 
publications

Digital twins, Food*…

1. ___________
2. ___________
3. ___________
4. ___________

• Selection 
based on Title 
and Abstract

• 84 possible 
relevant and 
accessible
papers1. ___________

2. ___________

4. ___________

1. ___________
2. ___________
3. ___________
4. ___________

• Categorization and 
analysis of 51 applications

Figure 3. Overview over the methodology for the classification in this survey. Publications found through a key word based search are
first selected based on the title and abstract. Afterward, the publications are analyzed and relevant publications are categorized in a
previously defined taxonomy.
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3.1. Definition of Research Questions204

The primary aim of this work is (i) to provide an overview of digital twins applied205

in the food sector regarding their intended use and (ii) to identify future research206

areas. According to this goal, we derived the research questions. First, we searched207

for taxonomies (RQ1) that enable classifying the digital twin concepts that we found208

according to their application purpose. As we are primarily interested in which area209

of the food industry (i.e., stages of the FSC) digital twins are applied, we decided to210

assign the applications found to the stages of the FSC as presented in Figure 1 (RQ2). To211

better understand the application’s reason for use, we classified the applications found212

according to our taxonomy (see RQ1) to answer the research question of how digital213

twin can support the activities in the FSC (RQ3). Further, we analyzed the different214

types of digital twins that we identified for providing an overview of the different key215

elements of a digital twin in the FSC (RQ4). Aiming to show the applicability and the216

benefits of implementing digital twins in different stages of the FSC, we conducted the217

last research questions. At first, we discuss the potential of digital twins to improve the218

food industry (RQ5). Then, we discuss the challenges of implementing digital twins in219

the food sector (RQ6). These considerations lead to the following research questions:220

• RQ1 – How can digital twins be classified?221

• RQ2 – In which areas of the food industry are digital twins applied?222

• RQ3 – Which types of digital twins are applied in the food industry?223

• RQ4 – What are the key elements in implementing a digital twin?224

• RQ5 – What is the potential of digital twins in the food industry?225

• RQ6 – What are the challenges in applying digital twins in the food industry?226

3.2. Selection Method227

To find digital twin applications in the FSC (answering RQ2 and RQ3), we con-228

ducted a literature review and included publications available between May and the229

end of September 2021. Therefore, we searched the databases Google Scholar, Sco-230

pus, ScienceDirect, and Academic Search Complete by EBSCO Publishing. We cre-231

ated two groups of keywords: The first group concerned digital twins, including232

the keywords “digital twin”, “digital twin application”, and “cyber-physical233

systems”, while the second groups provides the relation to the food sector, i.e., consisted234

of the keywords “food”, “food supply chain”, “food production”, “food industry”,235

and “food sector”. The search was performed by combining each of the keywords of236

both groups.237

Although we see agricultural plants or farms as part of the FSC (production stage),238

we did not search directly for “digital twin” AND (“agriculture” OR “agrifood”)239

since our main focus is on the food quality related to the food processing. Therefore, the240

food processing and the transportation stages (supply and distribution), as well as the241

retail, are from special interest rather than the primary food production since the food242

quality parameters are ultimately adjusted during the processing. After the processing243

stage, all actions, e.g., cooling, serve to maintain and guarantee the food quality until244

consumption. Still, we did not discard works related to the agriculture sector when245

found with our set of keywords.246

Additionally, we added publications to our list, which we did not find directly were247

referred by other publications and possibly relevant for this research (backward search).248

In the literature search process, we also identified reviews, e.g., [29,39–41]. However, as249

we wanted to avoid the misinterpretation or incorrect reproduction of information, we250

rather included the original publications or sources of such reviews. Additionally, this251

ensures that we do not include different points of view for the same application.252

Furthermore, we performed a free web search with Google and DuckDuckGo to253

find examples for digital twins related to the FSC applied in the industry. Although254

this search provided many results, we only included a few of them [42–47] as the found255
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information was often not precise enough to analyze in detail required for a classification256

with our taxonomy.257

3.3. Analysis Method258

The authors selected the publications based on the title and abstract. Additionally,259

the entire paper was searched to overcome the disadvantages of a keyword-based search.260

Each publication was reviewed and applications found were classified according to261

the taxonomy by one of the authors by screening the complete paper. Afterward, each262

publication, as well as the classification, was reviewed by another of the authors. If an263

application was classified differently, a third author also reviewed the classification, and264

the classification was discussed by all authors.265

The focus of this work is on digital twin applications related to foods, food products,266

and their quality. Therefore, the publications needed to contain a specified description267

of a digital twin application and terms related to “food” (see Section 3.2). Further,268

we included publications with regards to food products or their quality, meaning we269

included digital twins of field monitoring applications, animal monitoring applications,270

and processing machines as well, which we found through the search. We investigated271

applications that were already realized and implemented as well as concepts for digital272

twins if the provided description was sufficient enough for the analysis.273

A few publications found were located in the periphery of foods, food products,274

and their quality. For instance, Linz et al. [48] and Tsolakis et al. [49] describe digital275

twin applications of agricultural machines and robots, whereas the digital twins are276

used for route planning. Furthermore, Jo et al. [50,51] propose a digital twin for a pigsty277

to control the energy demand while adjusting the ventilation and temperature. Other278

publications provided too little information about the digital twin, although they were279

strongly related to our research, e.g., [31] and [52]. Since we were not able to classify280

them, we did not include those in our evaluation.281

For some works, we found subsequent publications extending the originally pre-282

sented digital twin. We added such follow-up publications as dedicated digital twin283

applications as they develop within the projects or the available information concerning284

the applications differed in the papers. Further, the originally published digital twin285

might be sufficient for some applications. In particular, those publications were from286

Skobelev et al. [36,53,54] concerning (wheat) plants; from Defraeye et al. [8,55], Shoji et al.287

[14], and Tagliavini et al. [56] regarding fruits; and from Bottani et al. [30] and Vignali288

and Bottani [57] relating to a pasteurizer.289

3.4. Selected Studies290

In total, we studied 84 publications, from which we included 38 publications after291

the application of the inclusion and exclusion criteria. The publication range spanned292

works from 2007 to 2022. Worth mentioning is that the publication from Shoji et al. [14]293

is assigned to 2022 since this is an online first available publication. Figure 4 reveals294

that the number of publications increased during the last years. In 2019, we observed295

a peak with 24 publications (12 included). In the years 2020 and 2021, the number296

of publications is slightly decreasing, counting 22 (9 included) and 13 publications297

(8 included), respectively. A reason for this decrease could be the Covid-19 pandemic298

and the inclusion of publications available until the end of September 2021.299

From the selected publications, the major proportion was originally published at300

conferences and journals, 47.4% and 34.2%, respectively (see Figure 5). Further, we301

included non peer-reviewed publications (18.4%) from press releases (2 publications),302

books, white papers, websites, reports, and project announcements (all one publication303

each). The inclusion of non-scientific publication types is appropriate for several reasons:304

Digital twins are still a rather young research topic, particularly in the food sector. In305

addition, the research is highly driven by the industry since the implementation of306

digital twins is strongly practice-oriented. However, non-scientific publications often do307
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not provide sufficient details for a classification; hence, this number of included works is308

limited.309

4. Results310

This section answers the research questions on how to classify digital twins (RQ1),311

in which areas of the food industry digital twins can be found (RQ2), what types of312

digital twins are applied (RQ3), and which key elements are required to implement313

digital twins (RQ4). First, we examined different classification schemes and derived314

the best fitting taxonomy for our research by combining different existing classification315

schemes (Section 4.1). Second, we analyze in which activities of the FSC digital twins316

are applied (Section 4.2). In Section 4.3, we investigate which types of digital twins are317

applied in the FSC based on our results of RQ1. The classification of all applications318

included in this section can be found in the Appendix (see Table A1). Finally, Section 4.4319

summarizes the key elements for the implementation of digital twins.320

4.1. Classification of Digital Twins321

Since digital twins have no unique and standardized taxonomy, this section pro-322

vides an overview of different classification approaches and classifies their relevance for323

our work. This answers the first research question:324

325

RQ1 – How can digital twins be classified?326

327
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The classification approaches differ in the authors’ focus on digital twins. The328

authors of [58] differentiate the terms digital model, digital shadow, and digital twin329

based on the data flow between the physical and digital object. A digital model is defined330

by a manual data flow between both objects, where the data flows automatically from331

the physical to the digital object and manually from the digital to the physical object332

in a digital shadow. The data flow in a digital twin is automated between both objects,333

which may serve as the controller of the physical object.334

In [59], digital twins are classified depending on the application level. The so-335

called unit-level describes the lowest layer and contains single units of the processing336

procedure, e.g., equipment or a machine. The system-level consists of several unit-level337

digital twins and can be understood as a production unit (e.g., a production line), while338

the System-of-System-level is the highest layer and able to capture complex systems339

(e.g., the shop-floor management system).340

The authors of [39] differ between service categories, meaning the use case of a341

digital twin. These categories are real-time monitoring, energy consumption analysis,342

system failure analysis and prediction, optimization/update, behavior analysis/user343

operation guide, technology integration, and virtual maintenance. They further distin-344

guish the technology readiness level (TRL) between the levels concept, prototype, and345

deployed. Jones et al. [29] classify digital twins according the product’s life-cycle phases346

imagination, definition, realization, support/usage, and retirement/disposal.347

However, we use a combination of the following two schemes as taxonomy since348

we are interested in the techniques behind the digital twins and the intended use of the349

digital twins. According to [8], a digital twin can be statistical, data-driven (intelligent),350

or physics-based (mechanistic). The first type is based on statistics, where an analytical351

model is solved with an ordinary differential equation or a simpler analytical equation.352

The intelligent digital twin is a data-driven model that relies on artificial intelligence353

techniques, e.g., machine learning (ML), for model development, calibration, verification,354

and validation. Mechanistic digital twins are based on physics. Hence, they are also355

called physics-based digital twins. These models concern all relevant physical, biochem-356

ical, microbiological, and physiological processes using multiphysics modeling and357

simulation. Several authors [4,60] mention that only a mechanistic digital twin is able358

to mimic the behavior of the real-world counterpart realistically and comprehensively.359

Therefore, a mechanistic digital twin is preferable for predictions. Worth mentioning360

is that intelligent digital twins also consider statistical methods. Further, the model361

parameters used in mechanistic digital twins can be quantified, verified, and validated362

with statistical and ML methods.363

In [8], the authors presented the types in a triangular structure containing the types364

statistical, intelligent, and mechanistic twins as corners. Therefore, the type of a digital365

twin could be assigned to corners as well as edges or in between. However, we decided366

to classify the digital twin applications according to their prevailing type, i.e., there are367

not any mixed types.368

The second classification scheme is similar to [29] since it represents the product’s369

life-cycle phases. Following the approach by Verdouw et al. [61], digital twins can be used370

to characterize and simulate the states and behavior of their real-life twins, which do not371

exist at a specific point in time. Further, digital twins may be used to monitor the current372

state of items, prescribe desired states, forecast future states, and automatically react373

to conditions of their real-world counterparts and, therefore, control systems without374

human interaction. Finally, digital twins are also able to outlast real-world objects,375

and they can be used to recollect their historical conditions. Worth to mention is that376

these categories can coexist within the same digital twin application. Table 1 provides377

a detailed description of the different categories, we used to classify the digital twin378

applications within the context of this work.379

It is notable that the definition of a digital model [58] corresponds to the definition380

of an imaginary digital twin [61]. Additionally, the categories by [39] and [61] are similar,381
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Table 1. Digital twin taxonomy (based on [8] and [61])

Type Description

Statistical Solving a simple analytical equation or an ordinary differential equation
(ODE) for calculations with the generated data.

[8]Intelligent Use of artificial intelligence techniques, e.g., machine learning, for
model development, calibration, verification, and validation.

Mechanistic Performance of multiphysics modeling and simulation to capture the
relevant physical, biochemical, microbiological, and physiological pro-
cesses.

Imaginary Simulates objects that do not physically exist in the real-world at the
given time.

[61]

Monitoring Monitors the current state and behavior of a real-life, physically existing
counterpart.

Predictive Projects future states and behavior of a physical object based on real-
time data.

Prescriptive Are able to intelligently recommend corrective and preventive actions
while using the results of monitoring and predictions.

Autonomous Control autonomously the behavior of the real-world counterparts with-
out human intervention.

Recollection Maintains the complete history of physical objects, which no longer
exist in real-life.

but since Pylianidis et al. [39] focus more technical approaches, the approach by Verdouw382

et al. [61] is used in this work.383

4.2. Applications of Digital Twins in the Food Supply Chain384

In Section 3.4, we observed that the number of publications increased in recent385

years. Accordingly, the number of digital twin applications increases as well. This386

section answers the second research question regarding the stage in the FSC where the387

digital twins are applied:388

389

RQ2 – In which areas of the food industry are digital twins applied?390

391

Figure 6 provides an overview of the absolute frequency of applications per stage392

in the FSC. The major proportion of digital twin applications could be found in the393

production stage, often referred to as agricultural applications (54.90%). Many applica-394

tions focus on the growth of plants [36,42,53,54,61–64] or monitoring the condition of395

animals [23,61,64–66]. Further, entire production systems as greenhouses or fields are396

twinned [34,43,44,61,62,67–71]. Several applications could be described as supportive,397

e.g., to monitor and control pests [35,65].398

The second most frequently assigned stage is the processing stage (31.37%). In this399

stage, the digital twins mainly concern processing machines, as pasteurizer [30,57] or400

packaging machines [45,72], or entire processing systems [6,45,73–76]. A few use cases401

focus on the optimal product composition or quality [45,46,77].402

Applications during transportation, in particular, the stages supply and distribu-403

tion (7.84% and 5.88%, respectively), determine the quality of fruits and vegetables with404

a focus on measuring the temperature [8,14,47,55,56,78]. Only one application could be405

assigned to the retail stage (1.96%), where it is used to determine the quality of fruits406

and vegetables as well as the remaining shelf-life [47]. Furthermore, one application is407

assigned to the consumption stage (1.96%). This application aims to twin a consumer to408

design food products, which are personalized to adapt foods in case of genetic disorders,409

such as diabetes mellitus [79].410

It should be noted that two applications were assigned to multiple stages: While the411

digital twin of a mango fruit to determine the quality during transportation was assigned412
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Figure 6. Results of the literature review – Absolute frequency of digital twin applications assigned
to stages in the food supply chain. As there are applications [47,56] assigned to several stages, the
total number of counts is 53 although 51 applications were found in 38 publications.

to supply and distribution stages [56], the digital twin concept for the determination of413

the quality of fruits and vegetables was assigned to the distribution and retail stages [47].414

4.3. Types and Categories of Digital Twins in the Food Supply Chain415

In addition to the stages in the FSC, where a digital twin is applied, the applications’416

intentions of use are of special interest. In Section 4.1, we specified a taxonomy regarding417

both the digital twin techniques and the intended use. It is necessary to note that in the418

case of the taxonomy regarding the intended use, the applications could be classified419

into several categories. Regarding the digital twin technique, applications could only420

be assigned to one type. In contrast to the previous Section 4.2, applications were not421

counted twice if they were assigned to multiple stages of the FSC. Hence, this section422

answers the third research question:423

424

RQ3 – Which types of digital twins are applied in the food industry?425

426

Figure 7 shows the classification of the digital twin applications regarding their427

different types. Most of the digital twin applications are classified as intelligent or428

data-driven (39.22%). These applications are used for monitoring and controlling plant429

growth environments, in particular greenhouses or fields [34,42,68,71]; the twinning of430

plants during growing itself [35,65]; the detection of pests and actions to tackle them [65];431

the monitoring of animals [23]; or the determination of shocks and the adaptation432

of process parameters during potato harvesting [61,78,80]. In addition, applications433

concern the monitoring of cattle with regards to their health, dairy productivity, or434

growth (weight gain for meat production) [61,65,66] and the control of food processing435

parameters [75]. The applications use clustering methods to determine the states and436

conditions of animals and plants and to classify pests, and further ML techniques to437

improve the system continuously.438

Almost the same proportion of applications are used for simulation, based on439

mechanistic or physics-based models (31.37%). Many use cases regard either the plant440

and animal growth in the production stage [36,53,61,62,64,69] or the monitoring of food441

processing, e.g., a pasteurizer, an ice cream machine, pudding production, malting, or442

the packaging design concerning special product properties [30,45,57,73,74,76]. More443

digital twins focus on fruit and vegetable quality during supply by measuring the444

surface temperature and calculating the pulp temperature based on that [14,56]. All the445

applications mentioned in this category could be described well with known models.446

Further, some applications are based on statistics (13.73%). In this category, many447

use cases focus on the control of food processing [6,45,46,72]. Other applications regard448

the design and personalization of food [77,79], or the twinning of a wheat plant [54]. All449
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Figure 7. Results of the literature review – Share and absolute frequency of digital twin types
found in 38 publications.

digital twins are based on statistical methods using means and standard deviations for450

conclusions and predictions.451

It should be noted that there are some applications (15.69% in total), which are not452

classified to any type [45,65,67] or the classification was not possible due to a lack of453

information [43–45].454

Figure 8 shows the categorization results of the digital twin applications with455

regards to their intended use. We observed that nearly all applications (94.12%) are456

used for monitoring their real-life counterparts. Only three use cases have not been457

classified in this category; those target applications for the design of new food products458

and food packaging [45] and the weight gain of cattle for the meat and livestock value459

chain [66]. We conclude that this observation makes sense since monitoring the physical460

objects is often the base for further predictions or decision-making. However, only461

32 applications (62.75%) are working with real-time data.462

Additionally, many applications are used for predictions (72.55%). Use cases, which463

are not predicting, are mainly used for real-time monitoring and decision-making. These464

cases concern the detection of pests, the control of plant growth environments based465

on current growing conditions, e.g., the temperature or humidity [34,44,63,67,68], the466

monitoring of animals [23,65], the control of food processing [74], and the design of467

products [45].468

The predictions could be used to suggest corrective or preventive actions (39.22%).469

Since most of the applications found are assigned to the production stage, many prescrip-470

tive digital twin applications belong to applications only able to assist in agricultural471

plants to enhance the quality during growth and harvest processes [42,43,61,62,64,69,472

70,78,80]. Another prescriptive digital twin is applied in a pudding production system473

to assist in production planning [73]. Further use cases only recommend actions rather474

than fully automatizing the system [75]. Examples are the personalized design of foods475

regarding genetically caused diseases [79] or the design of food packaging [45].476

A minor amount of digital twins (15.96%) are integrated into systems working477

autonomously. The applications automatically control greenhouses by adjusting pa-478

rameters like temperature or light [34,42,44] or processing plants by controlling, among479

others, the workflow or specified processing parameters as temperature [45,75].480

Some digital twins found were used for forecasting and simulating objects that481

were presently non-existent (23.53%). This category includes applications for the design482

of food products and raw materials [53,77] as well as food packaging and production483

plants [45,67]; applications to predict shelf-life and the food quality [47,56,66]; and484

applications to control the process flow [6,72,74,75]. The application of imaginary digital485

twins enables the avoidance of expensive mistakes [75] and detailed planning [67].486
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Figure 8. Results of the literature review – Absolute frequency of digital twin categories found in
38 publications. It should be noted that the total number of counts is not equal to the number of
applications since they are not restricted to one category.

Recollective digital twins, that maintain the complete history of physical objects487

(even if those do not longer exist), can be found in all stages of the FSC (31.37%). Some488

applications use the stored information for learning and improving the system [34,53,54,489

61–63,68,78,80]. Other applications were implemented to better document the processes490

and quality parameters of the physical objects [6,30,47,57,74,76,79]. It should be noted491

that due to a lack of information, many applications could not be classified in this492

category [23,42–46,56,65–67,69–71,73,75].493

4.4. Key Elements for Digital Twin Implementation494

In the previous sections, we describe our observations that the implementation of495

digital twins varies in the different stages of the FSC as well as the intention of use within496

a specified stage. The major proportion of digital twins are applied in the (primary) pro-497

duction and the processing stage. Especially in the distribution, retail, and consumption498

stages only a few applications have been found. In addition, different types of digital499

twins have been found. To investigate how to improve the food quality in the FSC using500

digital twins, necessary components to apply digital twins need to be identified. Hence,501

this section answers the following research question:502

503

RQ4 – What are the key elements in implementing a digital twin?504

505

First of all, there must be a motivation to implement a digital twin. Some digital506

twins are motivated by production and market reasons, e.g., to cope with a higher507

demand for more flexibility in the production to adapt to new market demands, such as508

clients requesting more products that meet unique nutritional standards and packaging509

sizes [6]. Moreover, the constant increase in business competition challenges companies510

to look beyond cost reductions and improve quality and productivity [81]. In particular,511

food processing industries are battling with low-profit margins while being challenged to512

reduce time-to-market and develop new, flexible processes for a wide range of goods [6].513

Another motivation arises out of the demand for more transparency to stakeholders,514

trust, and ownership of the processes [4]. Finally, some drivers are employee-related,515

such as offering training based on virtual reality applications that benefit from the data516

of the models in digital twins [81] and improving employee safety by detecting potential517

workplace hazards with digital twins [30,81].518

Every digital twin implementation starts with a process design in which all pro-519

cesses and interaction points are mapped that a digital twin will be modeling [28].520

Improvements with regard to cost, time, or asset efficiency are augmented in this design521

process.522
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Figure 9. The five-dimensional digital twin concept (adapted from [84]): Digital twins consist of a
physical as well as a virtual entity, which are supported by several services. Data are fused and
stored centralized. These four dimensions must be connected with each other, creating the fifth
dimension.

However, up to now, there is no consensus regarding a generic method in the523

realization of digital twins that can describe its implementation and the data acquisition524

from the physical to the virtual object [26]. Therefore, the authors of [82] proposed a525

digital twin model based on five dimensions (see Figure 9):526

• Physical entity: The physical world is the basis. The physical entity can be a device527

or product, a system, a process, or even an organization [83]. It carries out actions528

following physical regulations and deals with environmental uncertainty.529

• Virtual entity: The digital model is generated to replicate the physical geometries,530

properties, behaviors, and rules of the physical entity. Therefore, multiple models531

can be considered [84].532

• Service platform: Decision-support analyses support the monitoring and optimiza-533

tion of the physical entity with simulations, verification, diagnosis, and prognosis534

as well as prognostic [81,83]. Further, the virtual entity must be served with data,535

knowledge, and algorithms, and the platform itself needs to be served, e.g., with536

customized software development and model building.537

• Data model: The data is stored in the data model [81]. Since the digital twin538

considers multi-temporal scale, multi-dimension, multi-source, and heterogeneous539

data [83], the data model includes and merges data from the physical entity, the540

virtual entity, services, and knowledge [84].541

• Information connections: All dimensions need to be connected to ensure com-542

munication and update the information immediately [81]. This enables advanced543

simulation, operation, and analysis [83].544

Barni et al. [85] describe four best practices for the implementation of a digital545

twin: First, the entire product value chain should be included to ensure data exchange546

and consistency. Second, the virtual models should be kept dynamic through the547

development of well-documented methods for model generation and modification.548

Third, it should be ensured that data from several sources are included to measure the549

different variables and all essential properties of the physical product and the system550

(process, actuators, inputs, outputs, and environment) [4]. The exact combination of551
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relevant data is often unknown a priori when the first model is developed; accordingly,552

the design of the digital twin must offer modularity and scalability [85]. Fourth, long553

access life cycles should be ensured in order to address a long-term convergence within554

the physical and the virtual world. The approach by [73] reinforces this through a555

knowledge acquiring digital twin.556

Thus, the accessibility and continuous flow of near real-time data are important [23].557

The data generation can be achieved with sensors [8] and the use of IIoT technology [86].558

In addition, data processing and data evaluation or interpretation are of high rele-559

vance [23], leading to the requirement of sufficient computational performance to handle560

big data volumes [4]. Therefore, data transfer technologies are required to provide561

high-speed data gathering from huge amounts of remotely sensor data and transfer it in562

real-time within a network, e.g., Bluetooth, LoRaWAN or 5G [8].563

The core of a digital twin is based on modeling [86]. Therefore, physics modeling564

(geometrical, mechanical, material, hydrodynamic, and discrete event models), semantic565

modeling (ML models, deep learning, data mining expert system, and ontology model-566

ing), and model integration (flexible modeling, standard interface, black-box, gray-box,567

and multiphysics modeling) are used. ML techniques or artificial intelligence support568

data analysis and data fusion enabling efficient processing and interpretation of a large569

amount of data [81,87]; further, those techniques can continuously improve the per-570

formance of the system [23]. A key element is a human-machine interface, where the571

human user can easily interact with and understand the digital twin’s information [23].572

This is particularly important if the digital twin recommends corrective and preventive573

actions.574

In conclusion, the implementation of digital twins requires multidisciplinary knowl-575

edge [31], especially from food science. For instance, this includes microbiological,576

physical, chemical, and engineering disciplines as well as knowledge for efficient process577

management. Further, ICT is required. Commonly, ICT today is used in the FSC to578

connect the different stakeholders in the different stages through data exchange. In the579

future, the support of automated data collection with IoT technology and efficient data580

analysis, mainly using ML, will have increased importance.581

5. Discussion582

The survey results revealed large differences in the use of digital twins depending583

on the stages of the FSC: The major proportion of digital twins are applied in production584

and processing. Further, nearly all applications are used for monitoring, and many585

applications predict future states of their physical objects. However, only a few digital586

twins recommend actions or control systems fully autonomously, i.e., refer to prescriptive587

or autonomous digital twins, respectively. In addition, key elements to implement digital588

twins were investigated. To better understand the reasons, we primarily discuss the589

potentials of digital twins in the food industry (Section 5.1). Subsequently, this section590

discusses the challenges in implementing digital twins (Section 5.2). Section 5.3 closes591

this discussion with threats to validity.592

5.1. Potentials of Digital Twins in the Food Industry593

As shown in the previous sections, we identified in our literature review several594

potential ways to optimize the FSC with digital twins. This resulted in the following595

research question:596

597

RQ5 – What is the potential of digital twins in the food industry?598

599

In general, digital twins enable data accessibility and advanced analytics in real-600

time to assist in more informed, efficient, and faster decision-making [88]. Sensor data are601

fed into a digital twin that runs food process models (i) for providing relevant product602

process information and operation outputs in real-time for process control, troubleshoot-603
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ing, and supply chain management, as well as (ii) to optimize processes for uniformity,604

performance, and sustainability or to develop new designs [4,89]. Furthermore, this605

results in better risk assessment and mitigation strategies based on what-if analyses and606

simulations [88].607

Current approaches in Industry 4.0 focus on the intelligent collection of data with608

IoT technology and its analysis with ML algorithms [90]. This includes a variety of data609

sources, including raw material data, machine data, or customer data. Digital twins610

enable deeper insights due to the use of multi-sensor networks (sensor fusion), where611

different sensors measure several parameters from different locations [52,60].612

As stated before, sensors are required to provide data (environmental, process,613

machine, etc.) for the digital twins (see Section 4.4). With the development of smart614

sensors, monitoring the states during processes gets easier and faster [4]. Further, sensors615

become cheaper, need less power, and transfer the data wireless, which enables their use616

in more applications, even in mobile settings.617

For instance, intelligent packaging can directly share the quality and current condi-618

tion of a food product on the packaging during the distribution, retail, and consumption619

stages [91]. Intelligent packaging consists of intelligent materials or objects, which620

are defined by their behavior of monitoring “the condition of packaged food or the621

environment surrounding the food” [92]. Therefore, sensors are integrated into the pack-622

aging [91] to monitor, e.g., the temperature, the pH value, the humidity, the pressure on623

the food, or vibrations during transportation [93]. Further, gas sensors can measure the624

concentration of carbon dioxide (CO2) or hydrosulfuric acid (H2S) to allow concluding625

the current condition of the food [91]. An example of how to produce near zero-cost gas626

sensors is given by Barandun et al. [94]. Biosensors are able to detect pathogens or toxins627

in bacteria-contaminated foods [95].628

Likewise, integrating nuclear magnetic resonance (NMR) and other spectroscopy629

methods as well as imaging techniques [4] in conjunction with artificial intelligence and630

especially ML enables machine or computer vision. Such algorithms can analyze the631

food and are able to determine its composition, condition, and quality issues as spoilage,632

contaminants, or defects [96,97]. Furthermore, by placing virtual sensors on the digital633

twin model, sensor data from locations that would usually not be accessible to sensors634

can be generated [8]. Virtual sensor data are software-based outputs of fused data from635

physical sensors [98]. The application of physical sensors is limited by noise, interference,636

or unfeasibility due to spatial conditions [98] or locations difficult to access [8]. Virtual637

sensors provide data measurements of parameters or locations, which are physically not638

measurable [98]. This application enables the detailed prediction of food losses and the639

remaining shelf-life of the food products [60].640

Further, production planning can be optimized with ML in this context [99]. The in-641

dustry demands the possibility to adapt to current market demands as unique nutritional642

standards and packaging sizes and, therefore, require a higher production flexibility [6].643

This means not only being able to produce a wide range of products also counting with644

the capacity to reschedule the production dynamically [81]. The analysis and prediction645

of SC disruptions can be used to assist this [5,100], although the mentioned references646

focus on more economic aspects of these disruptions. Proactive adaptation improves647

system performance as it forecasts adaptation concerns (e.g., through identification of648

patterns in historical data) and reacts either by preparing an adaptation or adapting [101].649

Autonomous systems can respond to changes in the state during ongoing operation,650

while digital twins can integrate a variety of data like environment data, operational651

data, and process data [26,102]. This also includes supplying different stakeholders in652

the FSC with actionable real-time data, such as the remaining shelf-life for each shipment653

(based on the product’s physical, biochemical, microbiological, or physiological states),654

on which logistics decisions and marketing strategies can be adjusted [8,88].655

Another use case is predictive maintenance of machines [103]. Digital twins are656

able to show the evolution of the process in each element of a production or process-657
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ing machine without the need to halt the process or open the system to examine its658

state physically [30]. Faults in the system can be spotted significantly earlier thanks to659

intelligent data analysis [88], leading to more efficient approaches for predictive main-660

tenance, which is made before faults or failures occur [104]. This can be considered in661

production planning and decrease down-times. Further, virtual reality and augmented662

reality can be based on digital twins and support training and maintenance or repair of663

machines [89,105].664

Digital twins are also useful during product and process design, where actual mon-665

itored sensor data allow to check for conformance of the product specifications with the666

design intent and customer requirements [8,106,107]. Additionally, tests on prototypes667

can be replaced by simulations on the digital twin, which results in a reduction of costs,668

time, and resources [77,104,108]. Regarding the complete product life cycle, digital twins669

also respect the disposal of the packaging and food remains and, therefore, consider sus-670

tainability aspects [104]. Aiming to achieve a sustainable FSC, digital twins can optimize671

the environmental impact as a consequence of the growth of production systems [109].672

Digital twins facilitate the collaboration of cross-functional teams [88]. They can673

be used to clarify specifications with suppliers and optimize designs. If the company674

develops a new digital twin with every product, each model will comprise data on the675

precise components and materials used in the product, configuration options specified676

by end consumers, as well as process conditions experienced during production [110].677

Moreover, digital twins are able to assist in terms of personalized nutrition by adjusting678

product recipes in response to changes in consumer preferences; designing products679

with a specific chemical composition, nutritional value, and functional orientation; and680

developing functional, specialized products tailored to the needs of small groups of681

people that will assist in lowering the risks of disease in those who already have it,682

as well as satisfy the demands of those who want to tailor their diet to their specific683

needs [77,79].684

Furthermore, digital twins can enhance food safety by improving product traceabil-685

ity [111] through the possibility to identify problems in real-time and to record this by686

storing shipment condition data [8]. Worth mentioning is the approach by Botta et al.687

[111], combining a blockchain-based verifier with the digital twin application to validate688

and secure the data. Further, digital twins could assist regulatory organizations with689

providing useful data to avoid delays in import and export or companies during the690

application of the Hazard Analysis and Critical Control Points (HACCP) concept to691

suggest control points and remedial actions [8].692

5.2. Challenges in Implementing Digital Twins in the Food Industry693

The implementation of a digital twin consists mainly of the following key elements:694

a real-life object or process, which should be twinned; a virtual model of the real-life695

counterpart, including all its essential properties; and a linkage between both [8,30,84].696

Further, technical components are required to sense the physical entity and adjust the697

virtual entity accordingly or to store and process data. The extent of applications differs698

in the stages of the FSC, although digital twins provide potentials in the food industry699

as discussed in the previous Section 5.1. Hence, this section addresses the following700

research question:701

702

RQ6 – What are the challenges in applying digital twins in the food industry?703

704

One of the major challenges of implementing digital twins is the lack of a gen-705

eral method, which describes how to gather the information from the physical to the706

virtual object [4,26,89]. Koulouris et al. [6] state that the specific characteristics of the707

food sector and high-value product industries, such as specialized equipment, com-708

ponent complexity, and high-quality standards, are responsible for the delay in the709

adoption of process simulation for design and modeling. Thus, the individual projects710
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for implementing a digital twin lead to higher investment costs due to the diversity of711

approaches and, therefore, are particularly challenging in smaller companies and poorer712

countries [4,26,112].713

In addition, the complexity and variability of raw materials and their properties714

used to create food products, and the limited shelf-life not only of food raw materials but715

also the products made of it are limiting the application [4,6]. Further, plants, processes,716

and knowledge are continuously changing environments, forcing the related digital717

twins to improve permanently [73]. Moreover, the lack of “multi-spatial/time scale718

models” from the current modeling technologies limits the representation of behaviors,719

features, and rules at the diverse levels and granularities of the spatial scale and the720

characterization of the dynamic process of physical entities from different time scales [83].721

The absence of good physicochemical data is presented as another major impedi-722

ment to the use of modeling and simulation tools [6]. For instance, food processing faces723

a wide range of foods with complex properties, hard to calculate or even to predict, such724

as molecular weight, pH, or water activity, and not so well understood thermodynamics.725

Furthermore, the kinetics of biological and chemical processes need to be understood726

and made calculable as physics-based models [4]. This effect is intensified by production727

mixes, technology variability, and the unpredictability of the physical solution [85],728

resulting in complex integration of different modeling methods [4]. However, process729

models can already be incorporated to estimate the energy and material requirements730

and expected process yield during the food processing [6].731

Depending on the complex integration of different methods in the digital twin732

application, the maturity of prescriptive analytic techniques might become a risk due to733

unreliability, thus a barrier to implementing a digital twin [81]. Further, the complexity of734

the digital transformation in the FSC requires step-by-step implementation, which takes735

several years until a productive state is achieved. Here, on the one hand, data security736

and validation need to be considered [31]. On the other hand, realizing autonomous737

systems need to pay attention to legislation, in particular hygienic requirements as well738

as traceability of the system’s decision.739

Further, there might be obstacles with regard to the culture in the food industry.740

Firstly, the human acceptance of novel and advanced technologies challenges the applica-741

tion of digital twins [108], especially as the competencies of the employees in ICT might742

be heterogeneous. For example, the survey “Nutrition 4.0 - Status Quo, Opportunities,743

and Challenges” by Germany’s digital association Bitkom and the Federation of Ger-744

man Food and Drink Industries (BVE) showed that 88% of the more than 300 surveyed745

companies in the food industry consider a lack of ICT competencies of their employees746

as a critical issue [113]. Secondly, the food production and processing industry is par-747

tially highly automated; however, in general, the industry is rather conservative with748

introducing new technology that automatically controls processes [31]. Lastly, the risk of749

lower attention to the real-world system and the dependency on the recommendations750

by digital twins need to be considered [52]. This might be a reason for the small amount751

of prescriptive and autonomous digital twins.752

Another challenge is that only by advancing sensor, communication, and data753

processing technologies, real-time interaction between actual and virtual twins can be754

achieved [85]. The systems themselves have to enable the implementation of digital755

twins, i.e., their properties must be known or observable, as well as they have to provide756

high-quality data [114]. In particular, production and processing machines need to757

be upgradeable, which may lead to higher investment costs [115]. Further, there are758

studies on remotely food monitoring during distribution, retail, and consumption [116,759

117]. However, technologies such as radio-frequency identification (RFID) or near-field760

communication (NFC), which would support the collection and transfer of data [96,97,761

117,118] are not widely applied for this purpose yet [119].762

The required expertise of knowledge becomes a real challenge for project teams [112].763

In order to address the requirements resulting from the key elements, multidisciplinary764
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knowledge is required [83]. This includes expert, plant, machine, and product knowl-765

edge [31]. Additionally, the ICT infrastructure, as well as their establishing and organi-766

zation, play important roles [31,81].767

The size of the system, which should be twinned, is further a challenge [81]. Since768

FSCs are often distributed across several entities, numerous legal regulations must be769

considered [31]. Furthermore, the entire environment must be taken into account with770

respect to the complete implementation of all required connections within the digital771

twin. These connections (including explicit and invisible ones), internal logic interactions,772

and external relationships given in the physical world are difficult to be reproduced773

virtually [83]. Thus, the implementation and improvement of a digital twin is a long774

process to achieve high effectiveness of the digital twin. However, because the intricacy775

of the interactions and processes makes it difficult to capture various characteristics of776

real-world supply chains, their models created are often simplified [120].777

5.3. Threats to Validity778

We used a well-structured approach for the literature review to provide a structured779

analysis. Each identified paper was read and classified by at least two authors of this780

work; unclear classifications were discussed by all authors. This significantly helps to781

reduce human bias in the process. However, some threats to validity still exist, which782

we discuss in the following.783

The choice of keywords might be restricted. Although this survey revealed many784

use cases in the production stage, often referred to as agriculture or agricultural applica-785

tion, we did not explicitly search with keywords concerning digital twins in agriculture.786

This may lead to a lower outcome of search results and the missing of relevant publica-787

tions and applications. However, it is common practice to narrow the scope for being788

able to handle a topic’s complexity, and we clearly describe the used keyword in Section789

3.2.790

In addition, we used “cyber-physical systems” as a keyword since those systems791

often integrate digital twins. This search revealed publications, which have not ex-792

plicitly mentioned the term “digital twins”. As the term itself is still relatively young,793

some publications might have been describing digital twins in a CPS without using794

the term. Moreover, it was not always possible to differentiate between simpler digital795

models/representations and digital twins. As a result, relevant applications may not796

have been taken into account.797

Further, the free web search using a search engine (rather than a scientific database)798

provided many results, including scientific publications, press releases, offered product799

ranges, project announcements, explanation videos, and more. Despite the great efforts800

we have made for this survey, we were not able to analyze all search results in detail and801

to the fullest extent. Therefore, some applications may have been omitted. However,802

our analysis also showed that non-scientific publications from industry often missed the803

required depth of detail to analyze and classify those publications thoroughly; hence,804

we assume that the additional contribution would be limited.805

Each publication was initially analyzed by one of the authors of this work. We fol-806

lowed a well-defined approach. Still, as humans are involved, the presence of subjective807

bias cannot be entirely excluded. To limit this risk, we double-checked each analysis808

by at least a second reviewer for each paper. In case of deviations, we discussed those809

publications with all authors.810

In particular, some applications were not possible to classify clearly to the stages of811

the FSC, defined in Section 2.1. This is caused by different definitions of the FSC and FSC812

structure or by the unspecified description of the referred stages in other publications.813

Others might argue that our FSC structure is not appropriate or not flexible enough for814

this classification, e.g., in the case of fresh fruit SCs. However, this paper aims to provide815

an overview of digital twin applications in the FSC. Therefore, a clear structure of the816

FSC is required, and the structure in this paper merged the most frequently used stages.817
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6. Related Work818

This work investigates the use of digital twins in the food industry, represented by819

the FSC, and studies the challenges and potentials of digital twins in the FSC. In this820

section, we provide an overview of related publications from the area of digital twins.821

Although the concept of digital twins and their technical capabilities are still in822

their infancy, literature reviews on digital twins exist. However, some reviews are823

not focused on foods, the food industry, or at least parts of the FSC. Jones et al. [29]824

characterized digital twins in general by determining the key terminology of digital825

twins. Therefore, they examined intentions of use and applied technologies. Finally,826

the authors identified research gaps to apply digital twins, concluding a review limited827

to more unified domains would be better. The work of Klerkx et al. [108] investigated828

digitalization in agriculture from a social-science perspective. In that sense, they review829

several related technologies, e.g., IoT, blockchain, and digital twins, among others, with830

regards to social aspects as the farmer’s identity and skills; ethics with regards to power831

supply and consumption and data privacy; and economics.832

Other works focus on a specific stage of SCs. Pylianidis et al. [39] surveyed the im-833

plementation of digital twin use cases in agriculture in particular and over all disciplines834

in general. Similar to our work, they classified the applications with regards to the disci-835

pline and the service category, according to the stage of the FSC and the digital twin type,836

respectively. They further considered the TRL, i.e., differentiate concepts, prototypes,837

and deployed digital twins. Additionally, Verdouw et al. [61] provided a scheme, which838

is used in our work. However, they focused only on agricultural applications as animal839

monitoring and crop management, which we included as well. Kritzinger et al. [58]840

differentiated the integration level concerning the data flow between the physical and841

virtual entity and concluded that the terms digital model, digital shadow, and digital842

twin are used interchangeably. The authors further regarded the type according to the843

TRL. They revealed that digital twins in manufacturing are most often present, but the844

work did not focus on food processing.845

A more all-encompassing view on the agri-food SC is presented in the work846

of Tebaldi et al. [40], including the SC stages supply, processing, and distribution (ac-847

cording to our taxonomy in Section 2.1). For the sake of completeness, we included the848

applications mentioned there in our work. Further, the works of Ivanov et al. [100] and849

Burgos and Ivanov [5] took entire SCs into account concerning the analysis of disruption850

risks. Therefore, [100] proposed a digital twin framework to analyze risks, to predict851

resilience, and to optimize the SC in order to avoid critical disruptions. The impact of852

the Covid-19 pandemic on FSCs is analyzed using a digital twin in [5].853

However, to the best of the authors’ knowledge, there is no publication that dis-854

cusses and reviews the application of digital twins in the whole FSC. Further, the derived855

research challenges to improve the integration of digital twins into the FSC, which acts856

as a kind of research agenda for the community, are unique in literature.857

7. Conclusion858

This work investigated the challenges and potentials of applying digital twins in859

the food industry. Therefore, we conducted a literature review concerning 51 digital860

twin applications and assigned them to previously defined stages of the FSC. The survey861

revealed that the major proportion of use cases is implemented in the production, often862

referred to as agriculture, and processing stages (28 and 16 applications, respectively).863

In addition, only a few use cases are deployed in the supply, processing, retail, and864

consumption stage (9 applications in total).865

Further, we classified the applications regarding their underlying model and the866

intention of use. Most of the digital twins are based on intelligent or mechanistic867

models (20 and 16 applications, respectively). A minor amount uses statistical mod-868

els (7 applications). Nearly all of the examined digital twins are used for monitoring the869

physical counterpart (48 applications). Additionally, 37 applications calculate predic-870
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tions. However, only a minor amount of digital twins recommend actions or assist in871

autonomous system control (20 and 8 applications, respectively). Few applications are872

referred to imaginary digital twins (12 applications). A few more use cases maintain the873

history (16 applications), but uncertainty due to a lack of information must be considered874

in this category.875

The main challenges of integrating digital twins within FSCs stem from the difficulty876

of collecting high-quality physiochemical data and integrating digital twins into existing877

supply chain structures [6]. High-quality physicochemical data is required for the use878

of digital twin modeling and simulation tools. However, it is challenging to collect and879

process this type of data due to food processes having inadequately described properties880

and difficult to calculate or predict variables, among other factors. Effective data models881

that can accommodate this variability are required; however, there are currently no882

commercially data models available that can integrate different modelling methods on883

different scales [85]. Further, the lack of multidisciplinary knowledge is challenging884

the application [31]. In order to tackle this, new research perspectives, such as Food885

Informatics [121], need to be deployed.886

In order to assist data accessibility, novel and cheaper sensors are developed, en-887

abling them to be integrated into the food packaging [91]. In conjunction with other888

related technologies as blockchain, this provides more possibilities to monitor the food’s889

condition during the later stages [122]. This leads to a transformation of the FSC with890

digital twins that potentially offer greater transparency, improved traceability, reduced891

disruption risk, and optimized processing. In addition, digital twins allow to sense and892

monitor parameters and states at difficult accessible or even inaccessible locations, e.g.,893

pulp or machines, by providing the ability to place virtual sensors. Finally, through894

the creation of digital human clones, food production can become more individual and895

personalized with regards to human health [77,79].896
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Appendix A907

The survey in this work was based on a systematic mapping. Therefore, applications908

were classified according to the taxonomy proposed in Section 4.1. Table A1 provides909

a complete overview of the applications found in the literature and included in this910

work. Few publications contained several applications. Therefore the use cases can be911

distinguished through this table. Further, it reveals the FSC stage, the applications were912

assigned to, and how we classified the applications in detail.913
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Table A1. Overview of the applications found in the literature and included into this work and their classification according to the
taxonomy in Section 4.1. Please note: ‘X’ marks true, ‘n.a.’ that the information was not available. Further, the following abbreviations
are used in the table header: Ref. – Reference; rt – real-time; stat – statistical; int – intelligent; mec – mechanistic; ima – imaginary; mon
– monitoring; pred – predictive; pres – prescriptive; auto – autonomous; and rec – recollective

Ref. Application Stage rt stat int mec ima mon pred pres auto rec

[6] Beer brewery Processing X X X X X X
[8] Mango (fruit) Supply X X X

[14] Fruits and vegetables Distribution X X X
[23]1 Animal monitoring Production X X X n.a. n.a. n.a. n.a.
[30] Beverage pasteurizer Processing X X X X X
[34] Greenhouse Production X X X X X X
[36] Wheat plant Production X X X X
[63] Potato plant Production X X X X X
[42] Greenhouse Production X X X X X X n.a.
[43] Greenhouse Production n.a. n.a. n.a. n.a. X X X n.a.
[44] Greenhouse Production X n.a. n.a. n.a. X X n.a.
[45] AMWAY (Product design) Processing X X X n.a.
[45] KRONES (packaging design) Processing X X X X
[45] Beverage plant (filling) Processing X X X X X n.a.
[45] Cheesery plant Processing X n.a. n.a. n.a. X n.a. n.a. X n.a.

[46]
Processing plan (chocolate
bars)

Processing X X X X n.a.

[47] Fruits and vegetables
Distribution/

Retail
X X X X X

[53] Plant Production X X X X X X
[54] Wheat plant Production X X X X
[55] Mango (fruit) Supply X X X

[56] Mango (fruit)
Supply/

Distribution
X X X X n.a.

[57] Tube pasteurizer Processing X X X X X
[61]2 Potato (vegetable) Production X X X X X
[61]3 Animal monitoring (cow) Production X X X
[61]4 Greenhouse Production X X X X X

[61]5 Organic vegetable farming
(grow and harvest lettuce)

Production X X X X X X

[61]6 Animal monitoring (pig) Production X X X
[62] Hydroponic farm Production X X X X X X
[64] Aquaponic system Production X X X X X
[65]7 Dairy Monitor (cow) Production X X X X n.a.

[65]8 Open PD (plant desease
detection)

Production X n.a.

[65]9 INSYLO (silo’s stock
monitoring)

Production X X n.a.

[65] OliFLY (pest traps for olive fly) Production X X X n.a.
[65]10 BeeZon (apiary monitoring) Production X X n.a.

to be continued on next page

1 https://www.cainthus.com/
2 https://www.iof2020.eu/use-case-catalogue/arable/within-field-management-zoning
3 https://www.iof2020.eu/use-case-catalogue/dairy/happy-cow
4 https://www.iof2020.eu/use-case-catalogue/vegetables/chain-integrated-greenhouse-production
5 https://www.iof2020.eu/use-case-catalogue/vegetables/added-value-weeding-data
6 https://www.iof2020.eu/use-case-catalogue/meat/pig-farm-management
7 https://www.connecterra.io/
8 http://www.openpd.eu/
9 https://www.insylo.com/

10 https://www.beezon.gr/el/

https://www.cainthus.com/
https://www.iof2020.eu/use-case-catalogue/arable/within-field-management-zoning
https://www.iof2020.eu/use-case-catalogue/dairy/happy-cow
https://www.iof2020.eu/use-case-catalogue/vegetables/chain-integrated-greenhouse-production
https://www.iof2020.eu/use-case-catalogue/vegetables/added-value-weeding-data
https://www.iof2020.eu/use-case-catalogue/meat/pig-farm-management
https://www.connecterra.io/
http://www.openpd.eu/
https://www.insylo.com/
https://www.beezon.gr/el/
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Table A1 – continued from previous page

Ref. Application Stage rt stat int mec ima mon pred pres auto rec

[66] Animal monitoring (cow) Production X X X n.a.
[67] Vertical Farm Production X X n.a.

[68]
Crop management (irrigation
system)

Production X X X X X

[69] Aquaponic system Production X X X X X n.a.
[70] Orchard production system Production X X X X X n.a.
[71] Crop management Production X X X X n.a.
[72] Processing plant (water filling) Processing X X X X
[73] Processing plant (pudding) Processing X X X X X n.a.
[74] Malthouse Processing X X X X X
[75] Processing plant (Ketchup) Processing X X X X X n.a.

[75]
Processing plant (milk powder
production)

Processing n.a. X n.a. X X n.a. n.a. n.a.

[75] Processing plant (cheese) Processing X X X X X X n.a.
[76] Ice cream machine Processing X X X X
[77] Meat product Processing X X X X
[78] Potato (vegetable) Supply X X X X X X
[79] Consumer Consumption X n.a. X X X X
[80] Potato (vegetable) Production X X X X X X
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