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Abstract—Code offloading enables resource-constrained de-
vices to leverage idle computing power of remote resources.
In addition to performance gains, offloading helps to reduce
energy consumption of mobile devices, which is a key challenge in
pervasive computing research and industry. In today’s distributed
computing systems, the decision whether to execute a task locally
or remotely for minimal energy usage is non-trivial. Uncertainty
about the task complexity and the result data size require a
careful offloading decision. In this paper, we present Voltaire—
a novel scheduler for sophisticated energy-aware code offloading
decisions. Voltaire applies machine learning methods on crowd-
sourced data about past executions to accurately predict the com-
plexity and the result data size of an upcoming task. Combining
these predictions with device-specific energy profiles and context
knowledge allows Voltaire to estimate the energy consumption on
the mobile device. Thus, Voltaire makes well-informed offloading
decisions and carefully selects local or remote execution based
on the expected energy consumption. We integrate Voltaire into
the Tasklet distributed computing system and perform extensive
experiments in a real-world testbed. Our results with three real-
world applications show that Voltaire reduces the energy usage
of task executions by 12.5% compared to a baseline scheduler.

Index Terms—energy-aware code offloading, mobile ad-hoc
computing, machine learning, Tasklet system

I. INTRODUCTION

The demand for computational power of software in areas
such as virtual reality, machine learning, or image processing
increases. In addition, battery constraints have become a key
challenge in pervasive computing with the advent of mobile
computing and smartphones [1]. As a solution, code offloading
enables applications to execute computationally intensive parts
on remote resource providers in cloud, grid, or edge envi-
ronments. These providers return the results via the network.
In addition to performance gains, code offloading helps to
reduce the energy consumption of mobile devices if the cost of
transferring a task and receiving the results is lower than the
cost of a local execution. Thus, a remote execution is in general
beneficial for computationally intensive tasks with small input
and result data. Analogously, less complex tasks with large
input and result data are to be executed on the mobile device.

In modern edge computing environments, the decision
whether to execute a task remotely or locally is non-trivial
due to uncertainty. First, in contrast to a traditional batch
system, the completion time of a task is not known a pri-
ori. Second, similar to the completion time, the size of the

execution output might vary for each execution. This results
in different transmission costs. Both task completion time and
result size may even change for different executions of the
same source code, as varying parameters and input data have
a considerable influence. Third, important context variables
such as connection type or bandwidth change frequently and
need to be monitored at runtime [2].

Energy-aware offloading has received much attention in
research [3]. Most notably, in MAUI, Cuervo et al. show the
effect of different network interfaces on the energy consump-
tion [4]. In CloneCloud, Chun et al. apply dynamic profiling to
create profile trees that explore the impact of input parameters
on the energy consumption of the task [5]. In ThinkAir,
Kosta et al. build upon the two previous approaches and add
elasticity and scalability of the remote resources [6]. However,
none of the approaches focuses on reducing the uncertainty in
the prediction of the energy consumption from the devices’s
view. Instead, rather straightforward estimators are applied.

In this paper, we propose Voltaire — a novel scheduler
for sophisticated energy-aware offloading decisions in mod-
ern distributed computing systems. Voltaire is a centralized
scheduler that applies machine learning methods for regression
analysis based on crowd-sourced data of past executions
of similar tasks. This enables Voltaire to accurately predict
the complexity and the result size of an upcoming task. In
addition, Voltaire integrates device-specific energy profiles,
which model the influence of CPU and network activity on the
energy consumption. With further context knowledge about
the input data size of a task and the current bandwidth,
Voltaire is able to dynamically decide for each specific task
whether to offload or execute locally. Thus, Voltaire improves
energy consumption from the perspective of a mobile device
rather than a global system perspective for energy efficiency.
We integrate an implementation of Voltaire into the Tasklet
System [7] — a middleware-based code offloading system.
We deploy Voltaire in the real world to extensively evaluate
its effectiveness in realistic settings with three user-facing
applications. The experiments show that Voltaire is able to
predict the complexity and the result size of a task precisely.
We observe that Voltaire reduces the energy consumption for
task execution by 12.5% compared to the existing scheduler
of the Tasklet System.



In the remainder of this paper, we discuss related work
(II), give an overview of the system model and motivate
Voltaire’s design (III), present Voltaire in detail (IV), evaluate
its performance (V), and conclude the paper (VI).

II. RELATED WORK

Previous approaches estimate context parameters, profile ap-
plications, and monitor network states to find partitioning and
offloading strategies that “make smartphones last longer” [4,
p-1]. A recent comprehensive survey of offloading approaches
in edge computing can be found in [3]. Despite all these
valuable achievements, several issues remain unresolved and
are, therefore, addressed in this paper.

Multiple existing approaches do not consider all relevant
context dimensions or make assumptions about them that
conflict with real-world applications. Examples can be found
in [5], [8], and [9] that consider the size of the result as static,
which does not hold true for many real-world applications.
Previous works differ in their approaches to predict unknown
context dimensions such as the complexity of tasks or the
required data transfer. Some approaches perform a static code
analysis without taking the effect of input parameters into
account [10]. Several strategies include the computation of
averages or linear models based on past executions [4], [11],
[12]. We argue that machine learning can help to figure
out complex relationships between input parameters and the
estimates that go beyond simple dependencies [13], [14].

Typically, the offloading decision is made on the mobile
device. As this causes additional overhead and thus energy
consumption, the decision making process is often kept as
lightweight as possible. A remote decision making allows for
more complex algorithms [21], [31]. An additional benefit of
remote decision making is the number of samples that the
scheduler can observe to create execution statistics for an
application. A central decision maker can apply crowdsourcing
and collect usage data from multiple devices. Only a subset of
prior approaches is evaluated in real-world testbeds with actual
energy monitoring. This makes the results which are gained
through carefully set-up simulations complex to translate to
actual energy savings (e.g., [22] and [27]). Most approaches
are not integrated into existing offloading frameworks which
raises questions about their generalizability and applicability
in the physical world [17], [24], [25]. Further, some of the
previous works do not run real applications for the evalua-
tions [28], [29]. Table I summarizes existing works.

In this paper, we propose Voltaire— a scheduler for energy-
aware code offloading that applies machine learning methods
on crowdsourced data to make well-informed offloading de-
cisions. In addition, it monitors multiple context dimensions
such as device type, bandwidth, and input data size to accu-
rately decide whether to offload a task or to execute it locally.
We integrate Voltaire into the Tasklet System to evaluate its
effectiveness with real-world applications in a realistic setting.
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III. SYSTEM MODEL

Voltaire is a scheduler for an environment where a mobile
device offloads tasks to remote resource providers to reduce
local battery consumption. A mobile device called resource
consumer runs several applications which issue tasks. Tasks
logically consist of a fype, i.e., underlying source code, and
parameters. Additionally, tasks may require input data, such
as images for face recognition, that have to be transferred to
the providers. Consumers and providers use a middleware that
orchestrates the offloading process. Providers run (multiple)
process-level virtual machines (VMs) that interpret bytecode.
We assume that consumers also run such VMs. Thus, a local
execution is possible. After the execution of all bytecode
instructions, the provider sends the result (data) back to the
consumer in case of a remote execution. In the system, a
central broker performs resource management, i.e., decides
whether and whereto offload a task. In practice, several brokers
may create a network of brokers, each serving a subset of all
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Fig. 1. Schematic overview of an offloading system that runs Voltaire.

devices. Providers register at the broker and periodically send
heartbeats. Figure 1 illustrates the system model.

Voltaire reduces the energy consumption of the consumer
device by deciding whether a task is offloaded or not. In
contrast to related work that minimizes the total energy
consumption of a whole distributed computing system [28],
[37], we focus on improving the energy consumption of a
battery-constrained consumer device only, since modern cloud
or edge computing environments typically contain offloading
targets with constant power supply.

Voltaire suggests to offload a task when the energy required
for remote execution is expected to be smaller than the energy
required for a local execution, i.e. Eoffioad < Eiocar- The
energy consumption for a local execution can be approximated
by the task complexity measured by the number of bytecode
instructions that have to be executed (I;,sx) and the average
energy required for a single bytecode instruction (£;) in mJ.
The energy consumption for a remote execution is determined
by the size of the input data in bytes (D;nput), the result size
in bytes (Dyesuit), the inbound and outgoing bandwidths 53;,,
and S,y of the consumer device in bytes/s, and the power
for data transmission and data reception in mW (Pirqnsmit
and Pjeceive). Thus, the offloading decision is:

Dresult

Bin

Dinput

T * Preceive < Itask * E (1)
out

* Ptransmit +

Precisely knowing all the variables prior to task execution is
not feasible in practice due to three reasons. First, the number
of bytecode instructions and the size of the result data need
to be predicted for each upcoming task execution. Due to a
different parametrization, even tasks of the same type may
vary in their number of executed instructions as well as in the
sizes of their result data. Second, the energy consumption for
sending and receiving data, as well as for executing code is
highly device-dependent. Third, pervasive computing systems
can be highly mobile, resulting in constantly changing context
situations. Even a stationary system might be affected by the
dynamic nature of its environment and experience context
changes such as a varying bandwidth.

We design Voltaire on the basis of Equation 1. Voltaire’s
goal is to determine accurate values for all variables in
Equation 1 (cf. Table II). This results in three tasks:

Predicting the number of bytecode instructions and the
result size. Prior to task execution, the application informs
Voltaire about task type, parameters, and size of the input
data D;y,p¢. Based on crowd-sourced data of past executions
of the same task, Voltaire predicts the number of bytecode
instructions I;, %, as well as the size of the result data D,.csy¢.
In Section IV-A, we present how Voltaire integrates different
regression analysis methods from machine learning for this.

Integrating device-dependent energy profiles. The power
for sending and receiving data (P qnsmit and Preceive) and
the average cost for executing a bytecode instruction locally
(E)) depend on the consumer device that issues the task and
the context. In Section IV-B, we show how Voltaire uses
device-specific energy profiles to retrieve these values.

Estimating inbound and outgoing bandwidth. Voltaire
estimates inbound bandwidth f3;,, and outgoing bandwidth
Bout With low overhead by analyzing past data transmissions
in the system. Section IV-C describes this in more detail.

TABLE II

VARIABLES INFLUENCING THE OFFLOADING DECISION (SEE EQ. 1)
Variable Definition In
Dinput Size of the input data in bytes known a priori
Dresuit Size of the result data in bytes Section TV-A
Tiask Number of bytecode instructions of a task Section TV-A
o Average energy cr_)nsumption of 1 bytecode instruction Section IV-B

on the consumer in mJ

Phransmit | Energy consumption per s data transmission in mW | Section IV-B
Preceive |Energy consumption per s data reception in mW Section IV-B
Bout Outgoing bandwidth in bytes/s Section IV-C
Bin Inbound bandwidth in bytes/s Section IV-C

IV. VOLTAIRE- AN ENERGY-AWARE SCHEDULER FOR
PRECISE OFFLOADING DECISIONS

Voltaire is a centralized scheduler that runs on the broker
of a distributed computing system. A centralized approach
avoids massive communication overhead and is able to col-
lect and reason on more data. Additionally, running on the
broker allows Voltaire to apply more complex prediction and
decision making mechanisms compared to approaches such
as [4] and [19], where the offloading decision is made by
the consumer device itself and kept simple to save energy.
As a central instance for resource management, the broker is
supposed to run on a stable and powerful machine, which is
in most cases connected to a constant power supply. Voltaire’s
computationally intensive parts (e.g., updating the machine
learning models) run mostly asynchronous to the offloading
process, which reduces the influence on task completion times.

As Voltaire uses machine learning techniques that may be
computationally-intensive, a scalable deployment is important.
Thus, it might be necessary to replicate Voltaire on several
cloud or edge servers, which is a non-trivial task. Further
options are to reduce the number of machine learning models
per application, to update the models less frequently, or to
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Fig. 2. Four real-world applications from our experiments. Each point
represents the local energy consumption (Ej,.q;) and the remote energy
consumption (K, rioaq) Of a task execution. Thus, points in the gray area
should be executed remotely and points above the line locally. Voltaire is
especially attractive for applications (a) to (c) that sometimes benefit from a
remote and sometimes from a local execution, based on task and context.

limit the training data sets to a certain size. The realization of
scalability is part of future work.

For each task, the mobile device sends a request to the bro-
ker. The placement of the broker thus influences task comple-
tion times. Voltaire analyzes the incoming request and decides
whether to execute the task on the consumer device’s VMs
or remotely. Figure 2 compares the energy consumption on
the consumer device of four real-world applications from our
experiments when executed locally or remotely. We observe
that some applications such as the ray tracing-based image
rendering always benefit from a remote (or local) execution.
Due to its accurate predictions, Voltaire is, however, especially
attractive for applications that sometimes benefit from a remote
execution and sometimes from a local execution, depending
on the task and the context. Here, offloading decisions are
particularly complex. Voltaire’s offloading decision is not only
based on the knowledge of previous task executions from
this particular mobile device but from all resource consumers
together. Voltaire thus exploits crowd-sourced data for the de-
cision. The broker chooses an appropriate provider for remote
execution if Voltaire suggested a remote execution. The exact
choice of the provider is out of scope of this paper and does not
affect the consumer’s energy consumption. In previous work,
we have researched this provider selection extensively [7],
[38], [39]. In this section, we show how Voltaire performs
three basic tasks to determine the required variables for a well-
informed offloading decision from Equation 1 and Table II.

A. Predicting number of bytecode instructions and result size

The three variables (i) number of bytecode instructions
Tiask, (1) input data size Djppye, (ii) and result size Dyt
differ for every task execution. Whereas the input data size
D;nput is known beforehand and reported from the consumer
to Voltaire, Voltaire needs to predict the number of bytecode
instructions I;,s; and the result size D,cgqy:- We propose
to leverage feedback from past executions of the same task
type to predict these two variables. Several executions of
the same code may still vary considerably in the number

of instructions that are executed and the result size due to
different parameters and input data. To collect a larger data
basis, Voltaire crowd-sources information about all previous
executions of this task type in the whole system instead of only
considering past executions by the current consumer device.
The providers report a feedback after task execution to Voltaire
including the task type, the number of bytecode instructions,
and the result size. Crowd-sourced information is helpful for
the current decision since number of instructions and result
size are device-independent. Other devices may run the same
application and, hence, execute tasks of the same type, which
is valuable data for prediction. This is especially effective if the
behavior of a user barely deviates from the usual usage of an
application. Many applications, such as a photo filter or speech
recognition, even do not allow much variance in their use in
the first place. Voltaire integrates three methods for prediction
based on the crowd-sourced data. In addition to the (i) average
of prior executions and (ii) exponential smoothing, we propose
to use regression analysis (iii) as a machine learning method
to make precise predictions. In the following, we describe the
prediction of bytecode instructions. The prediction of the result
size is done analogously.

1) Average: Similar to related work such as MAUI [4] or
MACS [11], Voltaire integrates a strategy that predicts the
number of bytecode instructions based on the average of
past executions of the same task type. This method works
well when the number of bytecode instructions is mostly
independent from the parameters or the input data.

2) Exponential smoothing: Exponential smoothing [40] is a
statistical method where previous executions are weighed less
the older they are. It generally performs well in cases with
periodic fluctuations in the data [41]. This can be expected
for the number of bytecode instructions as consecutive tasks
of a similar type often originate from a single application that
is likely to start similar tasks. Let S, be the prediction for
instructions executed for the n’th execution and I, be the
corresponding actual number of executions completed. The
parameter @ with 0 < o < 1 determines how much weight is
assigned to the previous, true value.

Task = S0 = 4 el )
Sp—1xa+I,_1x(1—a) forn#l

3) Regression analysis: In experiments with real-world
applications, we observe that executions of the same source
code still vary considerably in terms of required bytecode
instructions. We identify three reasons for these deviations.
First, the size of the input data may be different. Classifying
a small data set, for instance, requires less instructions than
applying the same classifier to a larger data set. Second, the
parameters of the particular task execution have a considerable
influence. For example, calculating whether a number —
which is passed as a parameter — is prime requires on average
more instructions the higher this number is. Third, the special
characteristics of the input data may affect the number of
bytecode instructions. For instance, a photo filter task that



converts all colors but red to grayscale, may run considerably
shorter if there are only a few red pixels in the image. To learn
these complex influences of parameters and input data on the
bytecode instructions, we integrate a machine learning module
into Voltaire. For each task type, Voltaire trains three types of
regression models based on these three reasons for deviations.

T1: Prediction based on the input data size. This type of
regression model uses the input data size as a single feature
to predict the number of bytecode instructions. Some tasks
perform operations on all elements of the input data, e.g., on all
pixels of a bitmap. In these cases, the number of instructions
may be well predictable based on the input data size of the
upcoming execution and the knowledge from past executions.

T2: Prediction based on the parameters. In addition to
the input data size as a feature, Voltaire uses each parameter as
a separate feature for this type of model. The input data size
and the parameters of earlier executions are known to Voltaire
anyways, which eliminates additional effort for developers that
is required for models of type T3.

T3: Prediction based on application-specific features.
Experiments with real-world applications revealed that the
number of bytecode instructions is highly dependent on the
characteristics of the input data in some cases. Accurate
predictions are difficult in these cases without any domain
knowledge about the task. As an extreme and rather theoretical
example, a task may perform a complex operation on every
pixel of a bitmap, but only if the first pixel has a certain RGB
value. Voltaire’s models of type T3 allow the developer to
pass further customized machine learning features for these
complex cases. In Section V-A, we show how Voltaire’s
prototypical implementation offers this interface to application
developers. Some features may be easily computed, while
more sophisticated ones may require more computation and
thus more energy on the mobile device. A calculation on, e.g.,
only a fraction of the input data is therefore recommended. In
our experiments, we use 0.1% of the input data.

Voltaire performs online learning for all three types of
models. When new feedback is available, Voltaire has a new
training sample, consisting of the parameters, the input size,
the number of bytecode instructions, the result size, and — if
provided by the application developer — additional features.
Voltaire uses multiple regression models, including decision
tree, random forest, gradient boosting, linear regression, ad-
aboost, and bayesian ridge. It periodically performs a 5-fold
cross validation for the different regression models on the data
and stores the best model for each task type.

B. Integrating device-dependent energy profiles

Voltaire uses device-specific energy profiles to retrieve the
average energy consumption of executing one bytecode in-
struction locally (E;) and the energy consumption of sending
and receiving data for one second (Pjransmit and Preceive)
in the offloading process. All three parameters are device-
dependent. The energy profile of a smartphone, for instance,
differs from the energy profile of a laptop or a Raspberry
Pi. In this paper, we perform hardware-based profiling for
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Fig. 3. Three methods to create CPU energy profiles for Voltaire based on
(a) a constant value for the individual device type, (b) a fitted curve for the
individual device type, and (c) a fitted curve for the individual application.
The values shown are from exemplary measurements in the evaluation. Tasks
from the same application are depicted in the same color.

each device type. For cases where hardware measurements are
infeasible such as certain wearables, software-based profiling
approaches (e.g., [42]) are viable alternatives. In future work,
a combination of hardware- and software-based profiling may
further improve accuracy, as, e.g., different operating system
versions on devices with the same hardware lead to different
energy profiles. Voltaire uses two energy profiles per device
type: a CPU energy profile and a network energy profile.

1) CPU energy profile: This profile models the energy
consumption while performing a single bytecode instruction
on a local VM (E;). Our experiments show a tradeoff between
accuracy of the profile and the effort for profile creation. We
thus propose three approaches to create such profiles.

P1: A constant value for the individual device type. We
first assume that each bytecode instruction consumes the same
amount of energy. In this case, a CPU energy profile may
consist of a single value F; that is device-dependent. Thus, one
energy measurement with arbitrary applications is required for
each device type. This method (cf. Figure 3a) is rather simple
and thus applicable with low overhead in real-world systems.

P2: A fitted curve for the individual device type. During
our measurements, we observe that the average energy con-
sumption of a single bytecode instruction depends on the total
number of instructions. Shorter tasks with less instructions
also require less energy per instruction, whereas longer tasks
with a high number of instructions require more energy
per instruction. To include such effects, we propose to run
multiple applications and measure the energy consumption
of a single instruction depending on the overall number of
instructions of a task. The value for E; is then calculated as a
function of the (predicted) number of instructions of a task as
finstr,demce(ltask)a where finst'r‘,device is a deVice'dependent
function fitted on the measurement data (cf. Figure 3b).

P3: A fitted curve for the individual application. We
also observe that the energy consumption of a fixed number
of bytecode instructions varies across applications. Due to a
more complex underlying interpretation by the VM, some
bytecode instructions run longer and thus consume more
energy than others. This has a measurable effect on the energy
consumption of different applications as the frequency with
which certain instructions are used, varies. Therefore, we
propose to perform energy measurements for each application
separately as the most accurate method to create a CPU
energy profile (cf. Figure 3c). Whereas methods P1 and P2



only require one measurement per device type, this method
requires a * d measurements in total, where a is the number
of applications and d is the number of device types. New
devices are introduced comparably rarely to the market, while
new applications could be written by any developer at any
time. Hence, we believe that in practice, a >> d holds.
To eliminate the need to perform energy measurements for
each new application, we propose an alternative approach. We
observe a linear relation between task completion time and
energy consumption in our experiments. Thus, the average
energy consumption of a single bytecode instruction of a new
application Ei’new can be approximated by:

rznstr,new (3)

= Ei,bench_device *
Tinstr,bench_app

Ei,new

where Ei,bench_device is the average energy consumption per
instruction of a benchmark device, 7 s¢rnew the number of
instructions of the new application executed per second on
the benchmark device, and 7instrpench_app the number of
instructions of a benchmark application executed per second
on the benchmark device!. With this approach, no energy mea-
surements are required for a new application. New applications
only have to be executed on a benchmark device with known
energy consumption, which is feasible in real-world use cases.

2) Network energy profile: The network energy profile
models the energy consumption of a certain device per second
while transmitting and receiving data (P qnsmit and Preceive)-
Here, the energy consumption is independent from the type of
data that is transmitted or received. Thus, the network energy
profile is application-independent. As shown in Figure 4, the
network energy profile ideally contains separate energy values
for transmitting and receiving under varying bandwidths.

Data transmission

per second

——Data reception
n

15 20 25 30
Bandwidth [Mbit/s|

Fig. 4. Network energy profile based on exemplary measurements in the
evaluation. Separate models for transmitting and receiving data characterize
the respective energy consumption per second dependent on the bandwidth.

C. Estimating inbound and outgoing bandwidth

Inbound and outgoing bandwidth (3;,, and f,,; have to be
measured at runtime as they fluctuate [43]. Voltaire uses an
approach with low overhead. Consumers estimate the current
bandwidth by measuring the duration of transmitting and re-
ceiving input and result data of known size. Thus, no additional
data transfers are required. The bandwidth estimations are
piggybacked to the task request, such that the broker — and,
hence, also Voltaire— is informed about the recent value.

lfiynew and Ei,bench_device are both functions of the total number of
instructions as in P2. We omit this in the equation for better readability.

V. EVALUATION

In this section, we evaluate Volraire in a real-world testbed.
First, we show how we integrate Voltaire into the Tasklet
System. Second, we describe the experimental setup. Then, we
perform three experiments that evaluate (i) the effectiveness
of regression analysis for the prediction of the number of
bytecode instructions and the result size, (ii) the influence of
different device energy profiling methods on prediction quality,
and (iii) Voltaire’s potential to reduce energy consumption.

A. Voltaire as an extension of the Tasklet System

We integrate Voltaire into the Tasklet System [7] — a
middleware-based code offloading system. Voltaire is deployed
on the broker entity of the Tasklet System, which is already
used for resource management. Developers may write appli-
cations that use the Tasklet System in their favorite language.
Either via a well-defined API [38] that is available for several
popular programming languages or via socket-based inter-
process communication, the applications interact with the
Tasklet Middleware. The Tasklet System offers developers to
set Quality of Computation (QoC) goals to tailor the execution
to the requirements of their application. Voltaire extends the
Tasklet System with the Energy QoC mechanism. In that way,
developers are able to choose between the task scheduler of
the Tasklet System, which aims for fast task execution and
Voltaire, which reduces the energy consumption.

1 public int[] calculatePrimes(int lower, int upper) {
2 Tasklet t = new Tasklet(”primes.cmm”);

3 t.addInt(’lowerBound”, lower);

4 t.addInt("upperBound”, upper);

5 t.setQoCReliable(GUARANTEED);

6 t.setQoCEnergy();

7 TaskletID id = t.start();

8 int[] primes = TaskletResults.get(id);

9 return primes; }

Listing 1. An exemplary Java application that uses the Tasklet
System to offload a prime number calculation. The highlighted line
shows how developers can activate Voltaire via the provided APIL.

Listing 1 shows an exemplary Java application from [44]
that uses the Tasklet System Java API to offload a prime num-
ber calculation. Developers only have to set the Energy QoC
goal with the highlighted line of code to activate Voltaire. They
may conveniently pass parameters to the setQoCEnergy ()
method for prediction approach T3. Voltaire requires crowd-
sourced data about past task executions (cf. Section IV-A).
We extend the Tasklet System to perform the crowd data
collection at the broker, which runs Voltaire. In the Tasklet
System, providers inform the broker after task execution about
the TVM that has become idle. We piggyback the task type,
number of instructions, and result size to these messages to
collect data for Voltaire with minimal overhead.

B. Experimental setup

We apply Voltaire in a real-world distributed computing
system that runs the Tasklet Middleware. A Raspberry Pi
4B with a 1.5 GHz ARM Quad Core CPU offloads tasks to
providers. The Raspberry Pi works battery-powered in many
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Fig. 5. Exemplary energy consumption of the evaluation device.

use cases and is predestined for code offloading due to its
limited computational power. Since we aim to improve the
battery consumption of the consumer device, the choice of
the provider devices does not affect the measurements. A
UMB34C digital voltmeter measures the energy consumption of
the consumer device. In the following, we isolate and discuss
the energy consumption of the applications by subtracting the
idle energy consumption from the energy consumption during
the local or remote execution. The devices communicate over
an IEEE 802.11n Wifi network. The net bit rate achieved
at the application layer is 10 Mbit/s. We experimented with
different setups (e.g., closer to the access point) and observed
similar effects. Figure 5 shows an excerpt of a typical energy
measurement during the evaluation.

We run three real-world applications in this setup: (i) a
grayscale photo filter, (ii) a decision tree classifier, and (iii)
a speech detection. All applications are offloaded to remote
devices or executed locally on Tasklet Virtual Machines. The
grayscale photo filter may be used in photo editing or social
media apps. Users choose RGB color ranges (e.g., via a
range slider) and the filter application converts all pixels
of an image that differ from the specified color range to
grayscale. We collect a database of 3,000 smartphone images
of different sizes that are edited with the filter application in
the experiments. The decision tree classifier is useful in, e.g.,
pervasive healthcare use cases. For instance, it may perform
classification on physiological data collected by wearables
or smartphones to determine the health condition of a user.
In case of a remote execution, this application offloads a
trained decision tree model and a data set to a provider. In
the evaluation, we use 3,000 randomly created decision tree
models with 2,500 to 5,000 nodes. Additionally, we created
3,000 random data sets with 1,000,000 to 5,000,000 samples
and 4 to 25 features each. The speech detection application
identifies the periods of an audio file where people talk,
similar to, e.g., Matlab’s voiceActivityDetector. This
application may be the basis for many pervasive applications
such as speech enhancement for accessibility, speech coding,
and speech recognition. We create 3,000 audio files, ranging
from 15 to 150 s, from a total of 2.5 h of audio recordings that
we collected in a room with 5 people doing a group work.

C. Predicting number of bytecode instructions and result size

In the first experiment, we evaluate the performance of
regression analysis for predicting the number of bytecode
instructions I;,s; and the result size D,.¢g,¢ Of an upcoming

TABLE III
MACHINE LEARNING FEATURES USED FOR REGRESSION ANALYSIS

Photo filter

T1| Input data size

Input data size, photo width, photo height, 9 parameters that describe the RGB
range that remains in the original color

Features T2, 4 ratios of pixels that need to be converted (according to the R,
G, B, and RGB values) from a sample of 0.1 percent of all pixels

Decision tree classifier

T1| Input data size

T2| Input data size, tree size, #rows, #features, #tree nodes

Features T2, coefficient describing the balance of the tree, tree height, #nodes
in the tree/maximum #nodes in a tree of this height

Speech detection

T1| Input data size

T2| Input data size, amplitude threshold, #values skipped after speech is detected
Features T2, 12 features from a sample of 0.1 percent of the overall audio file
T3| (ratio of sample values above threshold, average amplitude, a histogram with
10 groups showing the amplitude distribution of the sample)

T2

T3

T3

task. Thus, we isolate Voltaire’s machine learning part and
predict the two variables with different regression methods.
For each method, we evaluate the three model types T1 to
T3 with 3,000 tasks per application. Table III describes the
features that were used. For each application, we perform a
5-fold cross validation with Python’s scikit-learn [45] library.
Table IV shows the respective R? scores for the prediction of
the number of bytecode instructions. We omit the values for
the prediction of the result size here for reasons of clarity
and comprehensibility. In general, the result size is well-
predictable by Voltaire as it is often directly dependent on
the input data size (e.g., for the photo filter).

The R? scores provide four insights. First, we observe that
the quality of the prediction improves for all applications
when extending the feature set from T1 to T3. The additional
features of T2 and T3 help Voltaire to better learn the reasons
for the behavior of certain tasks.

Second, our experiment reveals that the performance of
model type T1 varies considerably for different applications.
The number of bytecode instructions for executing a photo
filter task is strongly related to the input data size as the
algorithm traverses — and potentially converts — each pixel.
Thus, model type T1 performs comparably well here. Tasks
that originate from the decision tree classifier are difficult to
predict for model type T1. For this application, the input data
size can be approximated by r * f, where r is the number
of rows and f is the number of features in the input data set
that has to be classified. The same classifier, however, requires
considerably more bytecode instructions to classify a data set
with many samples but a few features in comparison to a data
set with few samples and many features.

Third, we observe that both photo filter and decision
tree classifier are well-predictable with models of type T2.
Only the speech detection application requires additional,
application-specific features. We therefore argue that Voltaire
is able to predict the number of bytecode instructions for
many tasks very precisely, without requiring any additional
programming effort by the application developer. Voltaire’s
models of type T2 only use input data size and parameters,
which are reported to the broker anyways, as features for



TABLE IV
AVERAGE R? SCORES FOR DIFFERENT REGRESSION ANALYSIS METHODS IN A 5-FOLD CROSS VALIDATION ON ALL 3,000 TASKS PER APPLICATION

App/Model Decision Tree Random Forest Gradient Boosting Linear Regression Adaboost Bayesian Ridge
pp/ilode T1 T2 | T3 | T1 | T2 | T3 | T1 [ T2 | T3 | TL | T2 | T3 | T1 [ T2 | T3 | TL |12 | 13
Photo filter .838 .834 | 967 | 857 | 916 | 985 | .860 | 919 | 986 | .875 | 901 | 945 | .872 | 905 | 968 | .875 | .875 | .875
Decision tree classifier | -.191 2994 1 997 | 129 | 996 | 998 | 398 | 997 | .999 | 411 | 997 | 999 | 406 | .994 | 994 | A4Il | .997 | .997
Speech detection 324 347 | 865 | 363 | .650 | .947 | 483 | .681 | .960 | .508 | .682 | .929 | .501 | .661 | .884 | 508 | .644 | .644
1 ' ' 1r — 1
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Fig. 6. Effect of training data size on R? score for three types of gradient boosting models (T1 = prediction on input data size, T2 = prediction on input data
size and parameters, T3 = prediction on input data size, parameters, and application-specific features). Crowdsourcing increases the training size in practice.

an accurate prediction. However, we also acknowledge that
Voltaire requires additional domain knowledge to deliver high-
quality predictions for tasks such as the speech detection tasks.
Thus, it is important to offer application developers an easy-
to-use API to pass such features to Voltaire.

Fourth, this experiment shows that Voltaire is able to predict
the number of instructions with high confidence when using
models of type T3, which is an important step towards pre-
cise energy-aware offloading decisions. The cross validation
reveals that gradient boosting is the most accurate regression
method for these applications. In the following experiments,
we therefore only show the results for gradient boosting.

Instead of only analyzing past executions of the same task
on the same device, Voltaire integrates crowd-sourced data
from all prior executions of the task in the system. Figure 6
depicts the R? score of the gradient boosting models of type
T1 to T3 as a function of the number of training data samples.
The models are tested on data from 1,000 task executions
for each application. We observe that the prediction quality
improves with an increasing number of samples. Especially an
accurate prediction of the speech detection application requires
more samples (R? = .909 for 200 training samples and
R? = .960 from the cross validation on 3,000 samples from
Table IV). Thus, we conclude that applying a crowd-sourcing
strategy is able to improve Voltaire’s prediction quality.

D. Integrating device-dependent energy profiles

Voltaire uses device-specific CPU and network energy pro-
files. In practice, Voltaire estimates the energy for local and
remote execution based on the predictions of the regression
analysis, i.e., the quality of both regression analysis and energy
profiling has an influence on the quality of Voltaire’s offloading
decisions. In this experiment, we isolate the effect of the
energy profiling methods on this process. To achieve this, we
calculate the estimated energy of local and remote execution
under the assumption that the regression method predicted the
correct number of instructions and result size. We compare

this estimation with the true energy consumption of local and
remote executions of the task in Figure 7.

We observe that the quality of the estimation of a local exe-
cution depends on the CPU energy profiling method. Method
P3 performs best for all applications. The profile bases on
application-specific measurements and is thus more accurate
than the more generic approaches P1 and P2. We therefore
recommend to create custom CPU energy profiles for each
application with method P 3 to unleash Voltaire’s full potential.
Whether method P1 or P2 performs better, depends on the
particular application and its similarity to the applications used
to create the profiles. We additionally observe that the energy
consumption of a remote execution based on profiled values
for data transmission Pp.qnsmir and data reception Preceive 18
well-predictable (see right part of Figure 7).
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Fig. 7. Average deviation of the estimations for the energy consumption of
local and remote executions with different strategies. This experiment assumes
that the number of instructions is predicted correctly.

E. Evaluating Voltaire’s energy-saving potential

In the final experiment, we evaluate Voltaire’s energy-saving
potential by applying it to 10 workflows of around 2.5 h each.
Each workflow consists of 300 tasks that include 100 photo
filter, 100 decision tree classifier, and 100 speech detection
tasks. Figure 8 summarizes the average energy consumption
per task across all workflows. Table V provides an overview



TABLE V

SUMMARY OF THE EXPERIMENTS (EXP. SM. = EXPONENTIAL SMOOTHING, GB T3 = GRADIENT BOOSTING WITH MODEL TYPE T3)

Energy consumption per task (mJ)

Improvement to local execution (%)

Correct decisions (%)

Appl.
Exp. Exp. GB Exp. | GB
Loc. | Rem.| Avg. Sm. o3 Ideal || Loc.| Rem. | Avg. Sm. T3 Ideal || Loc.| Rem.| Avg. Sm. T3 Ideal
Photo filter 8210 | 8131 | 8296 | 8260 | 7340 | 7203 1.0 -1.0 -0.6 10.6 | 123 50.5| 49.5 | 458 | 47.0 | 86.7| 100
Decision tree classifier | 5828 | 5942 | 5181 | 5224 | 4885 | 4876 -2.0 11.1 10.3 162 | 163 53.6| 464 | 71.6 | 70.5 | 96.2| 100
Speech detection 8196 | 7770 | 8087 | 8087 | 7225 | 7144 || - 5.2 1.3 1.3 11.8 | 128 4331 56.7 | 47.1 | 472 | 86.6| 100
[ Total [ 7411 7281 7188 7190 6483 6408 [ - [ 1.8 [ 30 [ 30 [ 1257 135 ][ 49.1] 50.9 | 54.8 [ 54.9 | 89.8] 100 |

of the energy consumption per application, the relative im-
provement, and the number of correct offloading decisions in
comparison to an ideal scheduler. The existing scheduler of
the Tasklet System offers the two strategies to execute all tasks
remotely or to execute all tasks locally. We observe that for the
3,000 tasks in the evaluation, a remote execution is on average
preferable to a local execution. Simply offloading all tasks,
however, only decreases the energy consumption by 1.8%.
We therefore conclude that task-dependent, context-aware, and
precise offloading decisions are necessary to realize the full
energy-saving potential of code offloading.

-1.8%
7 3.0% -3.0%

Required energy
compared to local [%)]

- 97
sl 12.5% e

e s s N 2 > A
Q&\\‘pre@g & Q?)(i c,%« g@ﬁ P

Fig. 8. Average improvement of the energy consumption by Voltaire in
comparison to the status quo in the Tasklet System. Exp. Sm. = exponential
smoothing, GB T1 = gradient boosting with model type T1.

A first step is to use the average of past executions as a pre-
dictor of upcoming executions, which was proposed in related
literature [4], [11] and which is also possible with Voltaire.
We additionally apply an exponential smoothing method with
a = 0.5 as a logical extension that exploits the similarity of
consecutive executions. Both strategies perform better than the
existing scheduler of the Tasklet System with energy savings
of 3.0%. Section V-C leads to the conclusion that Voltaire is
able to accurately predict the number of bytecode instructions
and the result size of an upcoming task. This final experiment
shows that the accurate prediction, together with precise device
profiling, has a considerable, positive effect on the energy con-
sumption. Voltaire’s regression analysis with gradient boosting
of model type T3 reduces the energy consumption by 12.5% in
comparison to the status quo. This is an improvement of 9.0%
compared to related work that makes offloading decisions
based on the average of past executions. Voltaire achieves
an energy consumption that is on average only 1.0% worse
than a hypothetical, ideal scheduler that always makes the
correct decision. Of 3,000 tasks, a small subset of 10.2% of the
tasks are incorrectly executed on the local or a remote device.
We further observe in Table V that Voltaire’s performance is

especially beneficial for the photo filter and the decision tree
classifier, which confirms the results of Section V-C. Figure 8
underlines that Voltaire’s prediction based on parameters and
application-specific features is a considerable improvement to
a prediction solely on the input data size.

F. Threats to Validity

In this paper, we focus on the energy savings of code
offloading from a device-driven perspective. If response times
are important, offloading has further advantages that should
be taken into account in the decision making such as the
choice of powerful providers [7]. A thorough analysis of the
interplay of energy awareness and response times is part of
future work. We perform measurements in a real-world testbed
with the Tasklet System. Therefore, measuring errors cannot be
ruled out completely. Additionally, future work may include an
evaluation with other device types, bandwidths, system load,
or connection types such as Bluetooth. The same applies to
the choice of machine learning techniques and energy profiling
methods, which was extensive but not exhaustive.

VI. CONCLUSION

This paper presents Voltaire — a scheduler for sophis-
ticated energy-aware offloading decisions. Voltaire decides
whether local or remote execution is beneficial for the energy
consumption of a mobile device depending on the current
context. Based on crowd-sourced data of past executions,
Voltaire is able to accurately predict the complexity and the
result size of an upcoming task with regression methods from
machine learning. We show that Voltaire reduces the energy
consumption for task execution by 12.5% compared to the
status quo in an existing code offloading system.

As future work, we plan to investigate the effectiveness
of our approach in a large-scale simulation-based study. This
simulation will also be used for a thorough investigation of the
interplay of energy awareness and response time requirements.
In addition, we will enhance Voltaire with a module that iden-
tifies similar task types and uses those runtime characteristics
for further increasing the accuracy of the predictions. Another
future research direction is to investigate fairness and incentive
mechanisms for a real-world deployment, which may induce
new attack vectors such as the manipulation of the crowd-
sourced data to obtain more paid tasks.
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