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Abstract

Despite the increased sensor-based data collection in Industry 4.0, the practical use of this data is still in its infancy.

In contrast, academic literature provides several approaches to detect machine failures but, in most cases, relies on

simulations and vast amounts of training data. Since it is often not practical to collect such amounts of data in an

industrial context, we propose an approach to detect the current production mode and machine degradation states

on a comparably small data set. Our approach integrates domain knowledge about manufacturing systems into a

highly generalizable end-to-end workflow ranging from raw data processing, phase segmentation, data resampling,

and feature extraction to machine tool anomaly detection. The workflow applies unsupervised clustering techniques

to identify the current production mode and supervised classification models for detecting the present degradation.

A resampling strategy and classical machine learning models enable the workflow to handle small data sets and

distinguish between normal and abnormal machine tool behavior. To the best of our knowledge, there exists no

such end-to-end workflow in the literature that uses the entire machine signal as input to identify anomalies for

individual tools. Our evaluation with data from a real multi-purpose machine shows that the proposed workflow

detects anomalies with an average F1-score of almost 93%.
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1. Introduction

The fast developments in the Internet-of-Things (IoT) as well as the continuous miniaturization of sensors lead

to new applications in areas such as Industry 4.0 and Industrial IoT. In Industry 3.0, the machines are already

automated, but the work steps are static. Therefore, fewer sensors are installed, which means that less data is

available on the machines. In Industry 4.0, not only are the static work steps automated, but more intelligence
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is transferred to the machines, so that various and flexible work steps can be automated and adaptations can be

made directly by the machines [1]. For this purpose, the machines are equipped with more sensors, which enables

extensive monitoring of machines and collection of data. However, the pure monitoring and collection of data is

only a first step. The key is the intelligent analysis of the collected data in combination with algorithms from

the fields of machine learning and data mining. To contribute to these developments, various companies start to

offer specific software for data analytics. Leading manufacturing companies also recognize the need to expand their

portfolios to support data acquisition and analysis, for example, Bosch Rexroth [2].

One such application that benefits from intelligent use of data is predictive maintenance. According to the

report “Industrial Internet of Things: Unleashing the Potential of Connected Products and Services” of the World

Economic Forum [3], predictive maintenance enables 12% savings on scheduled repairs, 30% reduced maintenance

costs, and 70% fewer breakdowns. One prominent example showing the significance of proactively identifying

production issues is the case of Volkswagen from 2016 where production issues resulted in financial losses of up to

400 million Euros per week. Nowadays, many companies still follow a regular (periodic) maintenance approach.

This often leads to waste of personnel and material, as in many cases, maintenance is not necessary and could be

postponed. A study by Mobley identified that this waste is responsible for one third of all maintenance-related

costs [4]. Besides, sudden machine defects can still occur, despite the regular maintenance, due to unexpected severe

degradation.

Although these numbers clearly show the importance of automatic and early failure detection mechanisms, com-

panies often lack an understanding of state-of-the-art machine learning approaches that can be used for predictive

maintenance. Furthermore, approaches from other areas, such as time series forecasting, are sometimes applied but

without adaptation to the specifics of the data from the industrial sector.

In contrast, predictive maintenance is a hot topic in academics where many researchers contribute with diverse

papers. The following paragraphs present an overview of related work and delineate our work from existing ap-

proaches in the literature. In a previous work, we have conducted a survey on predictive maintenance based on a

systematic literature review [5]. Using the methodical structure of predictive maintenance systems elaborated there,

we have identified two main areas that are related to our contribution: (i) predicting the health of machines, and

(ii) scheduling maintenance tasks. For both topics, an in-depth data analysis is required to predict health indices

and to decide when to schedule maintenance tasks. First, we give a short overview of approaches for predicting

machine health and then look at approaches for scheduling maintenance.

One category of methods that can be applied to detect faults of machines are the statistical models. Gebraeel, for

example, focused on analyzing the degradation of components (based on vibration data) and predicting the health

of machines [6]. He proposed a stochastic degradation modeling framework to model the remaining life of already

partially degraded equipment. His model focused on exponentially degrading components. In contrast, Liao et al.

focused on statistical pattern recognition for assessing a health index for machines [7]. They determined the health

index by clustering the identified patterns and predicting the machine performance based on auto-regressive and

moving average models. Cai et al. proposed a so-called similarity matching procedure that uses the kernel two-
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sample test to find the most similar instances in the training data set [8]. Using this statistical matching, they

provided an estimation of the remaining useful life of the examined machine along with its probability distribution

by using Weibull analysis.

More recent approaches typically apply deep learning methods for machine fault detection. In their study, Hoang

and Kang gave an overview of such recent techniques, which are specifically tailored to bearings [9]. In addition

to their survey, Hoang and Kang also presented a convolutional neural network (CNN) that used vibration data to

detect bearing failures [10]. Han et al. developed a transfer learning approach that used a CNN to diagnose related

but unseen faulty machine conditions [11]. Another transfer learning approach was introduced by Sobie et al. [12].

They used a simulation tool to create a training data set and applied the learned model to real world data. To

classify bearing failures, Sobie et al. compared different machine learning models, a CNN, and a dynamic time

warping approach. While the most common artificial intelligence architecture for machine fault detection is the

CNN, Yam et al. used recurrent neural networks (RNN) to add the capability of intelligent condition-based fault

diagnosis to conventional condition-based monitoring approaches [13]. To this end, they predicted the trend of

equipment deterioration. Other approaches for deep learning than those using CNNs or RNNs used for example

auto-encoders. Haidong et al., for instance, presented a stacked transfer auto-encoder that uses particle swarm

optimization to diagnose faults in various machines [14]. However, all these deep learning approaches require broad

and large data sets to train the models. Therefore, Shah et al. compared the performance of deep learning and

statistical approaches and found that in IoT-enabled intelligent manufacturing, statistical methods with feature

engineering processes provide higher accuracy than the deep learning models [15]. To overcome the problem of

massive training data sets, machine learning methods can be used instead of deep neural networks. However,

similar to statistical approaches, when using machine learning methods instead of deep neural networks, the first

step is to process the raw data and extract features. Knittel et al. proposed such an approach for the diagnosis of

milling machines using typical feature extraction steps and a support vector machine [16].

However, all these approaches only directly consider the execution with a faulty machine part and completely

disregard the segmentation of the raw signal. In practice, however, the machine usually provides data on the

complete production process, i.e., across several work steps and thus several tools and operations. Therefore, we

present an end-to-end approach, which segments the data of a multi-purpose CNC machine into the individual

work steps, and thus into different machine tools, and then examines individual phases to detect specific anomalies.

To the best of our knowledge, there does not yet exist such an end-to-end workflow that takes the entire machine

signal as input in order to identify anomalies for individual tools.

Approaches for scheduling maintenance tasks include, for example, the work from You and Meng [17]. They

proposed a modularized framework for scheduling predictive maintenance tasks. With their framework, they in-

tegrated real-time sensor-based prognostics information with classical preventive maintenance and condition-based

maintenance scheduling. Ladj et al. proposed a prognostic health management (PHM) that interprets the results

of existing PHM modules in a new way to identify the remaining useful life of a machine [18]. A genetic algorithm

is used to find a cost-optimal scheduling of production and predictive maintenance tasks. Yang et al. also used a
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genetic algorithm in their approach to schedule maintenance tasks with regards to the complex interaction between

production processes and maintenance operations [19]. The approach from Liao and Wang focused on predicting

the machine health as well as deterioration and, based on this, created a maintenance schedule [20]. To determine

a machine’s state, they used principal component analysis (PCA) and statistical pattern recognition (SPR).

Yet, the planning of maintenance tasks is out of the scope of the proposed workflow. In this work, the focus is

only on the detection of anomalous machine tools.

All mentioned approaches from both research areas used diverse methods for identifying the machine’s health

index and determining the remaining useful life. Yet, the applicability of the mentioned approaches strongly depends

on the machines under consideration and the available data. Therefore, it is difficult for many companies to find

the right approach for their problem and to transfer the methods used in the literature to their individual machine.

In this paper, a novel generalizable workflow for automatic anomaly detection for machines is introduced, which

is tailored to the specific requirements of manufacturing machines. The proactive identification of such anomalies

is a necessary step to predict degradation and to avoid machine downtimes. The workflow targets multi-purpose

machines with multiple different tools and various sensors. More specifically, the contributions of this paper are

threefold:

1. We propose a clustering-based approach for segmenting the raw data into the different work steps and thus

several machine tools (i.e., phases).

2. We present a generic data preprocessing and oversampling workflow including the application of basic machine

learning methods for learning the differentiation of normal and degraded behavior to predict the current

degradation state of production machines using basic machine learning classifiers.

3. We evaluate the learned model with real world data from a multi-purpose machine to show its applicability for

predictive maintenance. The experimental results show that by using only basic machine learning classifiers

(i.e., in contrast to deep neural networks), the workflow is able to learn the distinction between the normal

and abnormal state with only very few training examples. This is an important criterion for the practical

application in Industry 4.0, which deep neural networks typically cannot fulfill as these require large training

data sets.

The remainder of this paper is structured as follows: Section 2 presents the background on the data acquisition.

In Section 3, we introduce the machine learning-based anomaly detection workflow in detail. Section 4 presents

a broad experimental evaluation using real-world data of a CNC milling machine. Section 5 discusses the most

important results of the experimental evaluation as well as threats to validity. Finally, Section 6 concludes the

paper.

2. Background

One of the most fundamental parts of every data mining application is the data acquisition. In the field of

machine tools and automation, it is often challenging to obtain relevant data. Machines typically rely on sensor
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Figure 1: Data flow inside of and out of a CNC machine. The NC/PLC controller provides the nominal position of each drive. The

drives are connected via a real-time bus. Drive-internal sensor readings are transferred back to the controller where they are buffered

and then transmitted to an external server. This server also samples the vibration sensor mounted to the machine.

data for their operation. However, providing a convenient interface to access sensor data from external devices has

not been in the focus of manufacturers. Only in recent years, with the increasing overall interest in data analytics,

motivation has increased to provide access to sensor data and dedicate some of the limited computing capacity to

utilize the available data sources.

A subclass of manufacturing machines are computerized numerical control (CNC) machines, which provide

multiple potential data sources. The general components of such machines with relevant sensors and the resulting

data flow is illustrated in Figure 1. The numerical control (NC) is the core of the machine. It controls the movement

by following the programmed instructions and is usually accompanied by a programmable logic controller (PLC).

Together they form the central point for all data in the machine. The controller is connected to the individual

drive controllers via a real-time bus system (RT Bus), such as EtherCAT or SERCOS. Each drive is then connected

to one or two motors, usually synchronous servo motors. The drive controllers deliver current to the motors

according to the axis position demanded by the controller. They are also responsible for other motion related tasks,

like acceleration and deceleration ramps, and can also interpolate the movement. The motors are mechanically

connected to the movable parts of the machine. Internal sensors provide the drive with readings required for

controlling the movement. This data can usually be transferred to the controller (NC/PLC) via the bus system,

but the ability to extract such high-frequency data from the controller is highly vendor-specific, if it exists at all.

For this work, we had access to a five axis CNC milling machine. Besides allowing X, Y, and Z movements, it

also has a rotating vice and a pivoting table. A tool magazine with 40 slots allows for automatic tool changes. The

machine is equipped with Bosch Rexroth components, such as controller, drives, and motors. In addition, Bosch

Rexroth also provides a software tool called efficiency workbench (EWB) for data collection with its NC controllers.

This tool allows us to collect drive internal data, from which we selected position and velocity of the axes as well

as torque and power draw from the DC intermediate circuit and temperature of the motors. The selection of these

signals is based on the fact that they are standard parameters that should exist in most of today’s machines. The

maximum sampling rate is limited by the interpolator’s cycle time and the amount of data to be recorded. In each
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cycle, 10 data points can be sampled. If more than 10 parameters have to be sampled, multiple cycles are required

and the sampling rate for each data point is reduced accordingly. The recorded data is buffered by the controller and

transferred after the measurement is completed. Triggering can be done from within the NC program, which is also

recorded synchronously. This means that the program instructions can be directly associated with measurement

values of physical signals.

The recording of synchronous NC commands simplifies the phase detection, but it is difficult to apply this to

different domains or applications where such data is not accessible, like different vendors or motion controllers

without numerical control capabilities. In this paper, we address the problem of phase detection without relying

on a recorded NC program (see Section 3.1). The NC program is only used as gold standard data to validate the

results.

In addition to the machine-internal sensors, an external vibration sensor is also applied. Since vibration is bound

to occur in any rotary machinery, this seems like a natural choice. The used sensor (called CISS) is a multi-sensor

specialized for industrial applications. It offers easy connectivity and various integrated sensors at a relatively low

cost. It features 3-axis inertial sensors like an accelerometer, a gyroscope, and a magnetometer, as well as several

environmental sensors (i.e., temperature, humidity, atmospheric pressure, light, and a microphone). The sensor

provides integrated analog-to-digital conversion and can be connected either via Bluetooth or USB. The maximum

sampling rate is 1 kHz. There is a special mode available where only the accelerometer is active. This allows a

sampling rate of 2 kHz. For our use case, rotational movement of the main spindle with less than 20 000 min−1

(about 333 Hz) can be expected, so the sampling rate of 2 kHz is sufficient to capture the expected vibrations and

harmonics.

We chose this sensor over more sophisticated measurement equipment, because it delivers a reasonable good

resolution and accuracy. The low price and ease of application make it a good fit for retrofitting existing machines.

Besides, an exact acoustic analysis is not in the scope of this work. For mounting the sensor, a position close to the

main spindle of the machine was chosen. The machine can be seen in Figure 2a with the sensor position circled.

Figure 2b shows a closer view of the mounting position. The part on which the sensor is mounted moves with the

spindle in X, Y, and Z directions.

3. Proposed Approach

We propose a novel workflow to automatically identify anomaly effects in CNC milling machines. Figure 3

depicts a simplified overview of this approach. First, the data acquisition takes place (see Section 2) followed by

a data conversion. Data conversion parses the raw data extracted from the machine to a readable format for the

analysis. The remaining procedure of this workflow is two-fold: (1) dividing the raw machine signals into different

phases, each representing a certain production step, and (2) testing the individual phases for anomaly effects. Here,
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ally applied vibration sensor on top of the machine.
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(b) Closer view on the mounting position of the vibration

sensor. Compared to Figure 2a, the z-axis is rotated by 90

degrees.

Figure 2: CNC machine with sensor mounting position.

the first part itself consists of two steps: (1) an on/off1 recognition, and (2) a production step identification for the

on phases. Since the proposed approach is an automated workflow, the output of each step is directly used as input

for the next step. The operator only needs to set one parameter which is the number of on phases.

3.1. Phase Detection

The aim of this procedure is to split the raw data streams into signals that can be unambiguously assigned to

specific work steps in the manufacturing process. This step must be carried out in order to achieve comparability

of individual production steps across several manufacturing processes. As the overall objective is to detect anomaly

effects for individual tools in the CNC milling machine, a comparison of entire data streams of the manufacturing

processes does not provide useful results, because the variations within the signals are too small and vanish into the

data set. The procedure of dividing the raw data streams into phases again requires two main steps: (1) splitting

1An on phase represents the usage of a tool. In an off phase, the rotation of the spindle is stopped and the tool change takes place.
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Figure 3: The simplified overall workflow. First, the data is retrieved directly from the machine and an additional vibration sensor.

Second, an optional data conversion step is applied if the raw data is not available in a format readable for analysis. Third, the workflow

divides the data into on and off phases and subsequently maps the phases that perform the same manufacturing process to a common

identifier. Finally, the workflow trains a machine learning model for each type of on phase to detect the anomalies.

the raw data into on/off phases, and (2) mapping each on phase to a common identifier. These mechanisms are

necessary because anomalies can only be detected for individual tools with their respective manufacturing processes.

As mentioned previously, it is not feasible to extract the phases from the NC program steps, as this would limit the

applicability of the approach. This means that it would require domain knowledge and would make it impossible

to transfer the approach to different domains or use cases where this data is not accessible.

3.1.1. On/Off Recognition of Tool Change Phases

As anomaly effects of individual tools will not cause changes in the machine signals during the tool change

phases, these need to be filtered out. For this purpose, the raw machine signals are passed to this stage of the

algorithm. Then, this data is used to apply a k-means clustering [21]. Here, k is set to two, as this component of

the workflow is only supposed to identify on and off phases. This means that each measurement timestamp is either

mapped to cluster label 1 (on phase) or cluster label 0 (off phase) according to its machine signals. However, using

k-means on the noisy raw data results in many mislabelings. Figure 4a shows this behavior. The horizontal axis

shows the time since measurement start. The vertical axis shows the cluster label for each timestamp, that is, either

1 or 0 representing on or off respectively. Each circle in the figure indicates whether the respective set of features

is clustered as an off or on phase. In an optimal setting, there should be long sequences of equal cluster labels

without any breaks. These long sequences would represent an individual phase. Yet, there are many breaks (i.e.,

fast changes between the cluster labels) within the long sequences that indicate mislabeling. Thus, the proposed

workflow comprises a systematic threshold-based smoothing of the provided cluster labels.

In order to remove mislabelings, first the derivative x′ of the cluster labels is calculated.

x′ =
dx

dt
(1)

Since the signal is a discrete time sequence, the derivative x′ equals the first order difference of the time series x:

x′i = xi+1 − xi, for i in 1, ..., n− 1 (2)
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(a) Clustering with many mislabelings (interrupted sequences of the same cluster label).

(b) Clustering without mislabelings (clear boundaries between sequences of different cluster

labels).

Figure 4: One manufacturing process divided into on (1) and off (0) phases according to the cluster labels.

Afterwards, the indices of timestamps with a derivative not equal to zero are extracted. This ordered set of indices

p indicates potential label changes:

p = {0} ∪ {i|x′i 6= 0, for i in 1, ..., n− 1} ∪ {n} (3)

Further, it is necessary to check whether the potential cluster label change might occurred due to a new phase or

due to incorrect labeling during a phase. For this purpose, the distance between the indices is calculated. If the

distance is higher than a certain threshold t, a new phase is estimated. Otherwise, the label changes are treated as

mislabelings. The ordered set of final cluster label changes is calculated as:

c = {pj | (pj − pj−1) > t, for j in 2, ..., |p|} (4)

The threshold t has a default value of 100 ms, but it can also be set by the operator in case the tools are changed

or the data is recorded with another frequency. In the case of incorrect cluster labels, i.e., pj that are not included

in c, the label of the next accepted cluster is assigned. Figure 4b illustrates the resulting on/off recognition after

applying this procedure. The scattered cluster labels are now merged to longer sequences of identical cluster labels.
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(1) Data Consolidation

Figure 5: Simplified production step identification and mapping using hierarchical clustering (see Section 3.1.2). First, the workflow

merges the machine data and timestamps of the on and off phases. Then, it derives features of the resulting machine data segments

and generates a dendrogram from them. Depending on the number of on phases, the dendrogram is cut into different clusters, each

representing a specific manufacturing step.

3.1.2. Production Step Identification and Mapping

After splitting the raw signal into on/off phases, the workflow needs to map the individual production steps

to each other. Here, each production step is assigned a specific tool with its specific production sequence. Given

that an anomaly in a machine tool typically does not affect the production steps of other tools, the workflow

only identifies anomalies for such individual steps. Based on this mapping, the specific phases can be grouped

across the entire manufacturing processes. Figure 5 schematically illustrates the workflow of the production step

identification and mapping procedure. As input, the algorithm receives the raw machine signals and the cutting

points between on and off phases in order to separate the machine data phasewise into segments (see step (1) in

Figure 5). Then, features are calculated for each individual phase (see step (2) in Figure 5). Preliminary tests

showed the best results for the measures mean and standard deviation as features. Finally, the workflow applies

hierarchical clustering [22] on the feature data to map similar phases to a common identifier (see step (3) in

Figure 5). Hierarchical clustering generates a tree structure, also called dendrogram, that either: (1) starts with

all instances in one cluster and then splits each cluster into two clusters until all clusters consist of one instance

only (divisive, top-down), or (2) begins with an own cluster for each instance and then merges two clusters into

one until only one cluster is left (agglomerative, bottom-up). Here, the workflow applies the bottom-up approach

with centroid linkage as agglomeration method. This means that the centroid of each cluster is determined and the

distance between centroids a and b of two clusters A and B is calculated as Dcentroid linkage:

Dcentroid linkage (A,B) = d (a, b) (5)
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Therefore, the workflow employs the Euclidean distance as distance metric d, where l is the dimension of the feature

space:

d (a, b) = ||a− b||2 =

√√√√ l∑
i=1

(ai − bi)2
(6)

However, a cutting point for the dendrogram is required that specifies the desired number of clusters. This parameter

needs to be set by the operator. Yet, for a particular manufacturing process, the production steps are known in

advance and thus, the number of clusters is equal to the number of production steps plus one for the tool change

phase.

3.2. Machine Learning-based Anomaly Detection Approach

Based on the preprocessed signals, we learned multiple machine learning models within the workflow to detect

the anomaly effects and compare their performance against each other for this task. As an alternative, we also

implemented a typical order analysis method, namely resampling the signal to the order domain before computing

the Fourier transformation [23]. However, this common procedure did not provide satisfactory results (see Sec-

tion 4.3.1). For this reason, the focus is on machine learning methods, which are integrated into the workflow by

applying these algorithms to the individual phases identified by the previously presented methods. The purpose

of this step is to learn the correlation between anomaly effects and intrinsic characteristics of the machine signals.

However, a typical problem for machine learning and artificial intelligence applications is the amount of data. The

training of these methods strongly depends on the amount and variety of data, which in turn is the basis for a

good generalizability and predictive power of the resulting model. Thus, the workflow first enlarges the data set

to increase the amount of instances for training and applies the machine learning afterwards. In the following

paragraphs, these steps are explained in more detail.

In the workflow, the vibration signals are used for the detection of anomaly effects. An example of the recorded

signals from the used three axis vibration sensor is depicted in Figure 6. This sensor has a comparably high

sampling rate of 2 kHz which allows a resampling of the measurements. This means that the original vibration data

streams of the individual phases are split into r resampled data streams. Each new data stream dsi starts at the

i-th position, i = 1, . . . , r. After adding a value vi of the original data stream to the resampled data stream, r − 1

values are skipped until the next value is added. This resampling strategy can be described as:

dsi = (vi, vi+r, vi+2r, . . . ) , i = 1, . . . , r (7)

Then, these resampled data streams of the individual phases are used to calculate a variety of statistical features

describing the intrinsic behavior of the machine. For this purpose, the following characteristics were selected:

• Mean: represents a base level around which the vibration signal varies.

x̄ =
1

n

n∑
i=1

xi (8)
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Figure 6: An example of the vibration signals of the three axis vibration sensor.

• Median: similar to the mean but less outlier-sensitive. A large difference between the mean and the median

implies high outliers.

x̃ =
1

2

(
xb(n+1)/2c + xd(n+1)/2e

)
(9)

• Standard deviation: describes the amount of variation within the signal.

s̃ =

√√√√ 1

n

n∑
i=1

(xi − x̄)
2

(10)

• Skewness: measures the asymmetry of a probability distribution function around its mean value.

µ̃3 =
m3

m
3/2
2

with mk =
1

n

n∑
i=1

(xi − x̄)
k

(11)

• Kurtosis: similar to the skewness, the kurtosis describes the shape of the probability distribution function.

Instead of the asymmetry, the kurtosis quantifies the steepness of the probability distribution function.

µ̃4 =
m4

m
4/2
2

(12)

• Root mean square (RMS): the square root of the mean of the squared values of the measured signal is directly

related to the energy content of the vibration.

RMS =

√√√√ 1

n

n∑
i=1

x2
i (13)
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• Crest factor: measures the extremeness of peaks in a waveform. A large value indicates high peaks compared

to the RMS of the waveform.

C =
max (|x|)

RMS
(14)

• Gradient: β1 represents the steepness of the measured signals. Therefore, a linear model f (ti;β0;β1) of the

measured signals is fitted on the measurement time ti.

β1 with f (ti;β0;β1) = β0 + β1ti (15)

• Peak to peak (PTP): provides the total range between minimum and maximum value.

PTP = max (x)−min (x) (16)

The output of this step is a vector of features for each resampled data stream of each individual phase. Paired with

a class label indicating whether an anomaly is present or not, such a vector makes up a single instance used for

training the machine learning techniques. The proposed approach assumes labeled training data since it is based on

supervised machine learning methods. In terms of evaluating the approach, the class label is to be predicted by the

machine learning method, so only the features without labels are passed to the method. Afterwards, the predicted

class label is compared to the actual one. As machine learning methods, we selected naive Bayes, decision tree,

k-nearest neighbor [24], random forest [25], support vector machine [26], and XGBoost [27], while a simple logistic

regression model serves as a basis for comparison.

3.3. Implementation

The workflow is implemented in R functions that invoke each other. For this purpose, the output of each

component of the workflow is passed on to the next component, resulting in an automatic execution. R provides

many useful libraries for data processing and machine learning. The libraries used for the machine learning models

are presented in Section 4.3.2. Also, the machine learning methods applied are easily interchangeable in the code.

4. Case Study and Experimental Results

To assess the performance of the proposed automatic anomaly detection workflow, we conducted a real-world

case study. First, Section 4.1 presents the experimental setup. Then, Section 4.2 shows results on the phase

detection step followed by Section 4.3, which provides an evaluation of the anomaly detection part. Since, to the

best of our knowledge, there is no end-to-end workflow that takes the entire machine signal as input and detects

anomalies for individual tools, we do not compare the proposed workflow to related work. However, we analyze the

suitability of different machine learning methods for the application within our end-to-end workflow with respect

to their detection quality.
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Table I: Overview over the phases in the recorded NC program. Phases 3 and 5 are used for the unbalance detection.

Phase Description

- Initial tool pickup: Cutter head ∅ 63 mm

P1 Surface milling, circular deepening, rectangular deepening (3200 min−1)

- Tool change: Insert drill ∅ 24 mm

P2 Drill start bore for milling circular pocket (3000 min−1)

- Tool change: Slot mill ∅ 20 mm

P3 Widening start bore (2800 min−1)

- Tool change: Roughing cutter ∅ 32 mm

P4 Pre-milling circular pocket, roughing rectangular deepening (2800 min−1)

- Tool change: Slot mill ∅ 20 mm

P5 Roughing circular pocket (4500 min−1)

- Tool change: HSC end mill ∅ 20 mm

P6 Contour edges (17 000 min−1)

- Return last tool to magazine

4.1. Experimental Setup and Data Generation

To simulate a faulty tool, we attached a small weight to a drill in radial direction. Although it does not

interfere with the drilling process, it causes additional vibrations in the entire machine by acting as an imbalance

in the rotation of the tool. For higher rotation speeds, this resulted in an audible oscillation, distinct from the

usual operating noise of the machine. Unbalance effects cause increased wear and defects and should therefore be

avoided. While sophisticated systems for the detection of tool wear and breakage are available on the market, the

effort to apply them is usually high. The systems need to be integrated in the machine and require detailed process

information. Therefore and for the straightforward way of emulation, an unbalance can be considered suitable

as an example defect which allows us to examine a loosely coupled detection system with little included process

knowledge.

As for the process, an NC program was created that cuts a 5 mm deep shape into the surface of an aluminium

block. This process was chosen, as it can easily be repeated without requiring large amounts of material by simply

lowering the zero reference by 5 mm between the runs. The prepared faulty tool is used in two drilling operations

with two different rotation speeds (i.e., phases P3 and P5). In total, 5 different tools are used in 6 process steps.

In these phases, the main spindle is rotating and they are referred to as on phases. In between these on phases,

automatic tool changes take place where the spindle is stopped. Correspondingly, these are called off phases. The

on phases in which the tool with the prepared unbalance is active are termed unbalance phases. Table I gives an

overview over the phases in the recorded NC program.

For our experiments, two blocks of aluminum were used and in total we recorded data from 30 runs of the

described machining process. Of these, 13 had the unbalance attached, as described above. Additionally, we

recorded 7 runs (including 3 with an unbalance) where no material was processed. This means that the tools were

moving through air only. The data acquired during the case study and used for the evaluation of the proposed
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approach will be published on Zenodo2 upon acceptance.

4.2. Accuracy of the Phase Detection Component

Here, the accuracy of the phase segmentation (i.e., on/off phase recognition) and production step identification

and mapping are assessed. The evaluation of the on/off phase recognition algorithm is done by comparing the

timestamps of the phase edges provided by our algorithm to the timestamps captured within the NC data. We

capture the NC data only as a gold standard to evaluate the accuracy of the on/off recognition algorithm, as

narrowing the proposed workflow to scenarios where NC data is available would limit the applicability of the

approach (see Section 2). The parameter for the threshold-based smoothing was set to t = 100 ms. This parameter

was empirically determined in order to allow a meaningful distinction between on and off phases. Table II depicts

the results in terms of time differences. Each column represents a change between two phases and a phase change

ID with an asterix symbolizes that the phase changed from an on phase to an off phase. In contrast, phase change

IDs without an asterix show phase changes from off phases to on phases. For each of these phase change IDs,

Table II shows the mean time difference, the standard deviation of the difference, and the interquartile range of

the difference. All units are depicted in milliseconds. Here, a positive average time difference means that the time

calculated by the algorithm is later than the timestamp from the NC data, while a negative value indicates the

opposite. Regarding the mean difference, a clear distinction between phase changes from on to off phases versus

phase changes from off to on phases can be seen. Phase changes from off to on phases lie in a border of around

300 ms to 360 ms. In contrast, phase changes from on to off phases only show a difference of about 65 ms to 140 ms,

except for the last phase change, which has an average time difference of almost 550 ms. Obviously, these deviations

are not sufficient for a clear distinction between different phases. However, the standard deviation as well as the

interquartile range show that the variation between the runs is very small. Contrary to the mean values, the

standard deviation and the interquartile range exhibit smaller values for phase changes from off to on phases. The

interquartile range is of special interest since it represents that over all phase changes, half of all values lie in a

range of at max 35.5 ms. For 5 out of the 12 phase changes, this border is even much smaller, that is, at max 2 ms.

This shows that the proposed on/off recognition algorithm identifies the timestamps very well. Yet, the identified

timestamps differ by a rather fixed offset compared to the timestamps of the NC data. However, this fixed offset

can be determined during a calibration phase and therefore does not affect the quality of the on/off recognition.

Moreover, the offset can be explained by the fact that the NC data might use another point in time as phase change

than the algorithm.

The production step identification and mapping algorithm, which is executed upon the detected on and off

phases, even achieves a perfect matching with an accuracy of 100%.

2Link to the data set: https://zenodo.org (data will be uploaded upon acceptance)
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Table II: Mean [ms], standard deviation [ms], and interquartile range [ms] of the deviation between the timestamps of the predicted

phase change and recorded phase change. A * indicates that the phase changed from a producing step (on) to a tool change phase (off).

Phase Change ID CH1 CH2* CH3 CH4* CH5 CH6* CH7 CH8* CH9 CH10* CH11 CH12*

Mean 356.957 98.957 313.913 78.087 301.348 66.870 301.000 112.522 301.217 137.174 305.696 -548.826

Standard Deviation 18.190 16.339 1.041 13.588 0.982 8.081 1.243 14.235 1.043 10.836 0.974 11.472

Interquartile Range 35.5 32.5 2.0 26.0 1.0 14.5 2.0 27.5 1.0 16.5 1.0 22.0

4.3. Prediction Quality of the Anomaly Detection Component

To identify the degradation effects caused by the attached unbalance, we applied two approaches. First, we used

acoustic analysis methods to examine the oscillations. However, since the results were not convincing, we applied

a second approach using machine learning techniques (see Section 3.2). In the following, the results of the order

analysis are discussed first, followed by the results of the machine learning methods.

4.3.1. Acoustic Analysis

Unbalance, as an example for an anomaly, often results in audible effects, which we also experienced during the

data acquisition for our experiments. The use of acoustical methods seems natural. We therefore also aimed to

apply a basic order spectrum analysis to find a differentiation between good and anomalous measurements.

The occurring frequencies in the signal greatly depend on the rotational speed of the main spindle of the

investigated machine. A more general measure for varying speeds than the frequency spectrum is the order analysis

[23]. Here, the energy of the signal is displayed over the orders and not the frequency. The orders are multitudes

of the rotational frequency and provide a normalization for varying rates of rotation. While order analysis is often

applied for changing rotation speeds to get a spectrogram over an acceleration ramp, it can still be helpful for

normalizing different constant rotational speeds. The transformation can be simplified in such constant cases. In

our application, the spindle is only accelerated once in every phase, after picking up the tool, and it then maintains

the programmed speed. The variation we see in this speed is negligible with a deviation of only about ±5 min−1.

Thus, assuming a stationary case is valid.

To apply this, we compute the fast Fourier transformation (FFT) and apply Welch’s method [28] to average

out noise effects. We use a window size of 1000 samples, which equals 0.5 s, with an overlap of 50% and apply the

Hanning window function. The frequency values are transformed to orders by division through the fundamental

order f0, which is the average rotational frequency of the spindle for this segment.

In case of an unbalance, we expect that the effect is also visible in the spectrum. Specifically, we expect the

energy of the first order to be significantly higher [29]. In Figure 7, an overlay of all spectra for the good and the

unbalance measurements for the second unbalance phase (i.e., the fifth on phase P5) can be seen. The comparison

shows that the shapes of the good and the unbalance curves are similar. While we see no prominent difference in

the first order, it is evident that the overall level is increased. The first unbalance phase (i.e., the third on phase

P3) exhibits no difference at all and it is therefore not depicted here.
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Figure 7: Order spectra of all measurements in X direction for the second unbalance phase (i.e., phase P5). Measurements with an

attached unbalance are displayed in black, measurements without unbalance in gray.

Differences between the two unbalance phases could be explained by the higher rotation speed in the second

unbalance phase, as we expect in general higher excitation levels and, therefore, a greater impact of the unbalance.

The lack of an increased first order might indicate that the unbalance, while having an audible effect, is not

impacting the structure-borne sound as much. While the slight effect is visible in the plot, it is difficult to derive

criteria that separate both classes from it.

With this result, it can be seen that order analysis as a standalone classifier or as a preprocessing step is not

as sensitive to the anomaly as expected. For different anomaly effects, it might be even less effective. We conclude

that the acoustical approach is not suitable for our simplified means of data acquisition and that a more generic

approach would benefit the applicability.

4.3.2. Comparison of the Machine Learning Methods

To expand the data set, we resample the original vibration signal to a lower sampling rate (see Section 3.2).

For our experiments, we set the resampling factor r to 4. Therefore, the actual sampling rate of the vibration

sensor is reduced from 2 kHz to 500 Hz. Since we focus on automatic anomaly detection, the machine learning task

is a binary classification. Hence, we have selected accuracy, precision, recall, F1-score, and Matthews correlation
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coefficient (MCC) [30] as evaluation metrics:

accuracy =
TP + TN

TP + FP + TN + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score = 2 · precision · recall

precision + recall

MCC =
(TP · TN)− (FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

Here, TP represents the number of instances correctly classified as anomalous, while TN shows the number of

instances correctly classified as normal. Instead, FP and FN reflect the number of instances falsely classified as

anomalous and normal, respectively. To examine the predictive power of the learned machine learning models, we

split the data into a training and a testing set. For this purpose, we used 70% of the data for model learning

and the remaining 30% of the data to validate the respective model performance. We are aware that a single split

between training and testing data can lead to an arbitrary ranking of the machine learning models. Therefore,

we performed the experiment 100 times with random splits between the training and testing sets. However,

we ensured that resampled signals originating from the same base signal are either used for training or testing.

Otherwise, the results would be biased since the resampled vibration signals are very similar to the original signal.

As introduced in Section 3.2, logistic regression, naive Bayes, decision tree, k-nearest neighbor, random forest,

support vector machine, and XGBoost are applied on the data to detect the unbalance. The used parametrizations

of the algorithms as well as the utilized R libraries are listed in Table III.

The results for the first phase with an unbalance (i.e., phase P3) are shown in Figure 8. Since we conducted 100

Table III: Parametrization and used libraries for the machine learning methods. The workflow is implemented in R.

Method Library Parameters

Logistic Regression stats::glm family = binomial(link = “logit”)

Naive Bayes e1071 [31] laplace = 1

Decision Tree tree [32] split = “gini”, method = “recursive.partition”

k-Nearest Neighbor class [33] k = 5

Random Forest randomForest [34] ntree = 500, mtry = 10

Support Vector Machine e1071 [31] scale = FALSE, kernel = “polynomial”, degree = 3, coef0 = 0,

cost = 5, shrinking = TRUE, epsilon = 0.1

XGBoost xgboost [35] booster = “gbtree”, eta = 0.1, max depth = 10, gamma = 0.5, subsample = 0.75,

colsample bytree = 1, objective = “binary:logistic”, eval metric = “error”,

eval metric = “logloss”, nrounds = 1000, watchlist = list(train, val)
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Figure 8: Achieved values of the machine learning methods logistic regression (LogReg), naive Bayes (Bayes), decision tree (DT),

k-nearest neighbor (kNN), random forest (RF), support vector machine (SVM), and XGBoost (XGB) for each evaluation metric for the

first unbalance phase (i.e., phase P3). The value of r indicates the resampling factor. That is, for r = 1, no resampling is used. The

dashed horizontal line shows the theoretical baseline of the application of random guess.
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experiments per machine learning method, the figure depicts box plots of the distributions of the achieved values.

The horizontal axis presents the different evaluation metrics, while the left vertical axis shows the achieved results

for the metrics accuracy, precision, recall, and F1-score. In contrast, the right vertical axis is used for Matthews

correlation coefficient, as this metric ranges from −1 to 1 instead of 0 to 1. Similar to the other four metrics, a

larger value of MCC indicates a better prediction. That is, an MCC of 1 corresponds to a perfect prediction and -1

represents the worst possible prediction. Each of the seven different colors represents one of the machine learning

methods: logistic regression (orange), naive Bayes (aquamarine), decision tree (red), k-nearest neighbor (golden),

random forest (blue), support vector machine (green), and XGBoost (purple). Moreover, the brightness of the color

illustrates whether the resampling method was utilized or not. To this end, lighter shades stand for r = 1 and,

thus, the resampling method was not applied, whereas the darker shades represent the results achieved using a

resampling factor of r = 4. The medians of accuracy, precision, recall, and F1-score range from about 0.40 up to

about 0.80 (left y-axis). For the Matthews correlation coefficient, the achieved medians lie between -0.10 and 0.50

(right y-axis). First, it can be seen that the k-nearest neighbor classifier performed worst. Next, logistic regression,

naive Bayes, decision tree, and support vector machine without resampling achieved rather arbitrary results. That

is, their achieved values are close to the random guess (0.50 for accuracy, precision, recall, and F1-score and 0.00 for

Matthews correlation coefficient). In contrast, random forest and XGBoost without resampling already provided

reasonable outcomes that differ significantly from the random guess. As first insight, the detection performance of

random forest and XGBoost prove that the unbalance detection is possible. Second, Figure 8 shows that applying

the resampling approach with a factor of r = 4 improves the performance of all machine learning methods for

all evaluation metrics. This can be seen by the fact that the median values achieved by the approaches using

resampling are almost always higher compared to the respective approach without resampling. Only in the cases of

precision when applying naive Bayes and F1-score when using k-nearest neighbor classifier, the median detection

quality slightly decreased. Moreover, the 25th percentiles (i.e., the lower end of the box) enhance for all methods

when using resampling. Regarding the 75th percentiles (i.e., the upper end of the box), resampling outperformed

the original signal in 31 out of 35 cases. Only the metric recall achieved a higher third quartile when applying

decision tree, random forest, or XGBoost without resampling and the metric Matthews correlation coefficient for the

application of k-nearest neigbor classification. Furthermore, the application of resampling improves the arbitrary

results of logistic regression, decision tree, and support vector machine to results that differ significantly compared to

random guesses. Nevertheless, they do not achieve the performance of random forest and XGBoost with resampling.

To compare the performance of the machine learning methods in numbers, Table IV summarizes the average

values achieved for each setting and each evaluation metric. Again, the results show that resampling the vibration

signal improves the average performance of all machine learning methods for all evaluation aspects, besides recall

when using XGBoost as classification method. However, the degradation is only marginal. The best performing

method for detecting the anomaly in the first unbalance phase is random forest. It outperforms all other machine

learning methods in terms of accuracy, recall, F1-score, and Matthews correlation coefficient. Yet, regarding

precision, XGBoost achieves a higher value than random forest. The overall worst performance is shown by the
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k-nearest neighbor classifier, followed by naive Bayes. The single decision tree, logistic regression, and support

vector machine achieve comparable mediocre results that cannot compete with random forest and XGBoost in this

experiment.

Table IV: Mean µ of the machine learning metrics for resampled (r = 4) and non-resampled (r = 1) signals of the first unbalance phase

(i.e., phase P3). The best values of each metric are printed in bold.

Model LogReg Bayes DT kNN RF SVM XGB

Resamp. Factor r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4

Accuracy [µ] 0.529 0.671 0.499 0.591 0.474 0.649 0.391 0.438 0.661 0.725 0.461 0.669 0.667 0.717

Precision [µ] 0.532 0.688 0.596 0.602 0.505 0.675 0.446 0.479 0.665 0.761 0.523 0.705 0.702 0.781

Recall [µ] 0.534 0.709 0.479 0.540 0.552 0.698 0.444 0.563 0.769 0.786 0.482 0.674 0.762 0.752

F1-Score [µ] 0.569 0.672 0.531 0.554 0.541 0.669 0.455 0.481 0.677 0.736 0.505 0.670 0.693 0.735

MCC [µ] 0.069 0.360 0.062 0.193 -0.036 0.323 -0.128 -0.069 0.393 0.505 -0.042 0.352 0.363 0.464

Besides the average prediction performance, the robustness of the learned models is also of high importance. For

this purpose, the variation in the predictive power over the randomized experiments is considered. The advantage

of more robust models is that the quality of the prediction can be trusted more, whereas less robust models show a

larger variation in their prediction quality. Table V presents the standard deviations of the prediction performance

over all 100 experiments for each machine learning method. Here, k-nearest neighbor with resampling achieves the

lowest standard deviation on the metrics accuracy, precision, F1-score, and MCC. Only for recall, logistic regression

with resampling reaches a smaller standard deviation. However, as presented in Table IV, the overall predictive

power of k-nearest neighbor and logistic regression cannot compete with random forest and XGBoost in our use case.

Moreover, the table shows that the resampling technique reduces or at least maintains the standard deviation for

all machine learning methods and evaluation metrics. In some cases, the reduction is even substantial. Therefore, it

can be concluded that the proposed resampling method not only improves the results on the first unbalance phase

on average, but also makes the machine learning models more robust.

Table V: Standard deviation σ of the machine learning metrics for resampled (r = 4) and non-resampled (r = 1) signals of the first

unbalance phase (i.e., phase P3). The best values of each metric are printed in bold.

Model LogReg Bayes DT kNN RF SVM XGB

Resamp. Factor r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4

Accuracy [σ] 0.196 0.126 0.166 0.152 0.183 0.151 0.173 0.105 0.173 0.153 0.178 0.130 0.152 0.147

Precision [σ] 0.314 0.192 0.273 0.273 0.231 0.207 0.282 0.185 0.226 0.221 0.264 0.212 0.200 0.189

Recall [σ] 0.299 0.182 0.258 0.243 0.339 0.223 0.308 0.208 0.262 0.205 0.260 0.217 0.239 0.195

F1-Score [σ] 0.181 0.143 0.169 0.201 0.187 0.163 0.148 0.130 0.179 0.167 0.169 0.166 0.165 0.147

MCC [σ] 0.417 0.231 0.331 0.328 0.358 0.281 0.394 0.209 0.325 0.253 0.364 0.251 0.313 0.276
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Figure 9: Achieved values of the machine learning methods logistic regression (LogReg), naive Bayes (Bayes), decision tree (DT),

k-nearest neighbor (kNN), random forest (RF), support vector machine (SVM), and XGBoost (XGB) for each evaluation metric for the

second unbalance phase (i.e., phase P5). The value of r indicates the resampling factor. That is, for r = 1, no resampling is used. The

dashed horizontal line shows the theoretical baseline of the application of random guess.

Figure 9 presents the achieved machine learning metrics for the second phase an unbalance is attached to (i.e.,

phase P5). The layout and color-coding of the figure is similar to Figure 8. However, compared to Figure 8, the

performance is much better and in most cases, the 75th percentile even reaches 1.00. Similar to the first unbalance

phase, the predictive power of logistic regression learned without resampling achieves is rather poor. In fact, logistic

regression yields by far the worst results for this unbalance phase. Yet, for this unbalance phase, naive Bayes and

support vector machine are able to keep up with random forest and XGBoost. Furthermore, the single decision

tree and k-nearest neighbor do not only keep up with random forest and XGBoost, but they even outperform them.

The overall best method for the second unbalance phase is therefore represented by decision tree with resampling,

yielding the highest value for all evaluation metrics. Again, applying the resampling approach performs better or

at least as well as the approach that simply uses the original vibration data in most cases. There are only few

cases where the original signal yields better results, namely the 25th percentile of naive Bayes when considering

precision, k-nearest neighbor in terms of recall, and XGBoost regarding F1-score. The reason for the significantly

improved unbalance detection is most probably the increased rotational speed. In contrast to the phase depicted

in Figure 8, the rotational speed was increased from 2800 min−1 to 3500 min−1.
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Table VI shows the mean values achieved on each evaluation metric for all machine learning methods with and

without resampling. In most cases, the proposed resampling increases the average predictive power significantly. Yet,

the k-nearest neighbor classifier does not seem to benefit from the resampling, although it increases its precision,

F1-score, and MCC by a small amount. However, the accuracy is slightly decreased and the recall drops by a

significant amount. The only other case of a negative effect employed by resampling is the precision when applying

naive Bayes. As already mentioned for Figure 9, k-nearest neighbor and decision tree surpass random forest and

XGBoost for the second unbalance phase. More precisely, k-nearest neighbor without resampling achieves the

highest recall, while the single decision tree outperforms all other methods regarding accuracy, precision, F1-score,

and MCC. In contrast to the first unbalance phase, naive Bayes and SVM also reach competitive results and keep

up with random forest and XGBoost. Only logistic regression cannot compete with the other six methods.

Table VI: Mean µ of the machine learning metrics for resampled (r = 4) and non-resampled (r = 1) signals of the second unbalance

phase (i.e., phase P5). The best values of each metric are printed in bold.

Model LogReg Bayes DT kNN RF SVM XGB

Resamp. Factor r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4

Accuracy [µ] 0.593 0.817 0.833 0.890 0.857 0.927 0.914 0.912 0.879 0.908 0.860 0.890 0.857 0.907

Precision [µ] 0.623 0.834 0.940 0.915 0.882 0.939 0.912 0.923 0.875 0.926 0.908 0.933 0.889 0.921

Recall [µ] 0.586 0.827 0.771 0.886 0.890 0.940 0.945 0.925 0.908 0.917 0.845 0.879 0.883 0.910

F1-Score [µ] 0.609 0.813 0.833 0.885 0.863 0.929 0.915 0.919 0.875 0.909 0.860 0.891 0.869 0.902

MCC [µ] 0.214 0.649 0.687 0.804 0.742 0.861 0.838 0.839 0.770 0.809 0.699 0.776 0.739 0.805

The standard deviations for all settings on the second unbalance phase are depicted in Table VII. Similar to the

first unbalance phase, the resampling technique increases the robustness of the machine learning methods which

is shown by the reduction of the standard deviation for almost all settings. The only exceptions are shown for

naive Bayes when considering precision and k-nearest neighbor regarding accuracy and precision. Contrary to the

previous evaluations, the methods exhibiting the smallest standard deviation are more diverse here. While the

single decision tree still yields the smallest standard deviation for accuracy and recall, the support vector machine

reaches the lowest variation regarding precision. Finally, the smallest standard deviations for F1-score and MCC

are achieved by the k-nearest neighbor classifier. Compared to the first imbalance phase, the standard deviations

for all methods decreased, except for logistic regression regarding all evaluation metrics. The only other exception

is k-nearest neighbor without resampling with regard to accuracy.

To summarize, the average anomaly detection performance increased from the first unbalance phase to the

second unbalance phase as well as the standard deviation decreased. This behavior might be due to the fact that

the rotational speed was increased from 2800 min−1 (first unbalance phase P3) to 3500 min−1 (second unbalance

phase P5). In addition, the proposed resampling technique increases the predictive power and reduces the variations

in predictive power significantly. While random forest with resampling reached the best overall predictive power on
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Table VII: Standard deviation σ of the machine learning metrics for resampled (r = 4) and non-resampled (r = 1) signals of the second

unbalance phase (i.e., phase P5). The best values of each metric are printed in bold.

Model LogReg Bayes DT kNN RF SVM XGB

Resamp. Factor r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4 r = 1 r = 4

Accuracy [σ] 0.216 0.115 0.135 0.116 0.156 0.085 0.093 0.116 0.106 0.086 0.099 0.092 0.151 0.098

Precision [σ] 0.300 0.196 0.146 0.157 0.200 0.129 0.141 0.146 0.170 0.130 0.138 0.119 0.165 0.143

Recall [σ] 0.311 0.185 0.225 0.173 0.187 0.107 0.118 0.108 0.141 0.123 0.186 0.147 0.198 0.144

F1-Score [σ] 0.197 0.130 0.145 0.115 0.156 0.091 0.102 0.075 0.121 0.088 0.103 0.097 0.143 0.112

MCC [σ] 0.428 0.224 0.267 0.182 0.270 0.160 0.182 0.154 0.207 0.196 0.236 0.196 0.249 0.215

the first unbalance phase, the single decision tree with resampling outperformed the other methods for the second

unbalance phase. However, random forest still performed well also on the second unbalance phase. Finally, the

experiment has shown that the proposed workflow is able to accurately detect anomalies in machine tools when

proper resampling is applied.

5. Discussion

To summarize the most important results, Section 5.1 briefly recapitulates the evaluation findings. While our

goal was to introduce a most optimal and universally applicable solution, we are aware of some limitations of this

work. These are discussed in Section 5.2.

5.1. Evaluation Findings

As a brief summary of the experimental real-world case study, the key takeaways are the following:

(I) Given the measured machine internal data and vibration signal, common acoustic analysis does not detect

the anomalies well. This is mostly rooted in the requirements of these methods to receive data with high sampling

rate and signal resolution, which further requires expensive sensors. The minor differences were not reliable enough

to function as a classifier without human assessment. However, our goal was to achieve automatic detection with

standard machine data and inexpensive sensors.

(II) The proposed machine learning-based workflow for automatic anomaly detection is able to decompose the

data into segments for each production step and detect the anomalies with an F1-score of up to 92.9%. In addition,

the case study shows that the proposed resampling technique of the original signal significantly improves the quality

of the prediction.

(III) The proposed automatic workflow detects anomalies in machine tools with high accuracy even with little

training data. This shows that the workflow can be quickly integrated into industrial production processes.
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(IV) An increased rotational speed results in more accurate anomaly detection rates. This is consistent with

the physical properties of an unbalance since higher speeds mean greater resulting forces, which in turn affect the

measured signals. Yet, the means of detection might not be suitable for phases with slower rotational speeds.

(V) While only the ensemble learners random forest and XGBoost have shown a good predictive power on the

first unbalance phase (i.e., the unbalance phase with lower rotational speed), the single decision tree and k-nearest

neighbor even surpassed random forest and XGBoost with increased rotational speed. However, random forest and

XGBoost still achieved a high predictive power for the increased rotational speed. Therefore, when choosing a single

machine learning method, random forest should be preferred, as this method robustly allows accurate detection of

machine tool anomalies.

5.2. Threats to Validity

The goal of this paper was not to develop a novel machine learning approach but to combine several existing base-

level machine learning techniques in an intelligent way to automatize the procedure of anomaly detection in machine

monitoring data, especially with base-level signals and inexpensive sensors. By demonstrating the applicability and

effectiveness of such an automatic workflow based on rather simple machine learning techniques, we want to bring

academic theory and industrial practice closer together. The proposed automatic workflow consists of three main

steps: 1) on/off recognition, 2) production step identification and mapping, and 3) anomaly detection.

We are aware that 30 measurement runs only provide a small data set for machine learning models. In practice,

however, it is also an important criterion that methods can be applied quickly without long measurement and train-

ing time. To achieve this good performance despite the few training data, the workflow integrates the resampling

technique to artificially increase the amount of training data. The experimental results show that the automatic

workflow already achieves good performance even with these few training data. However, increasing the amount of

data would most likely further improve the model.

The main problem with most anomaly detection mechanisms for machine data is the reusability and transfer-

abiltiy since they require profound domain knowledge and specific data that cannot be captured by other prac-

titioners. However, the proposed workflow requires only one input by the practitioner, that is, the number of

different production steps. In addition, the proposed automatic workflow only uses standard physical quantities

(see Section 2) that can be measured on any comparable machine and therefore the approach is transferable.

For the data acquisition, the usage of the EWB tool also has some downsides. First of all, it is not designed for

automatic data acquisition and user interaction is required for every measurement run. While we are aware that a

productive use requires a fully automatic solution, this was not in the scope of this paper but can be implemented

easily in the future. The approach should be easy to migrate to an automatic system, once these are available.

Additionally, the EWB tool is specific for this vendor. To transfer this approach to other vendors, equivalent access

to machine internal data is required. However, the focus of this work is on providing a generally applicable workflow

and, therefore, the automatic extraction of signals is set as a requirement.
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The evaluation also included sampling analog input signals via the machines PLC as an alternative to the sensors

with integrated analog-to-digital conversion. While possible in principle, this has some major downsides. Obviously,

the PLC code would have to be adjusted. This can already be prohibitive for existing production machines for

liability reasons. Besides, sampling data at a high frequency puts additional load on the controller. Depending on

the application of the machine, e.g., controlling a high number of axes in real time, the computational resources

might already be exhausted. Finally, the sampling rate would depend on the PLC’s cycle time. Typically, the

fastest possible cycle times, depending on model and brand, range from 1 ms to 10 ms, that is, 1 kHz to 0.1 kHz.

In practical applications, the cycle time is often deliberately relaxed, e.g., to 10 ms or 20 ms, to avoid stressing the

system when the fast cycles are not required. Input modules with oversampling capabilities could make the sampling

more independent from the PLC cycle time but require additional hardware. Hence, using the PLC directly is not

optimal for our scenario to acquire additional high frequency data of external sensors.

While the resolution of the used vibration sensor proved to be not sufficient for a detailed acoustical analysis,

a more sophisticated measurement setup would have produced a better signal and subsequently potentially clearer

results for the acoustical features. We did not pursue this further in favor of a measurement- and preprocessing-

wise simpler solution. This helps to keep the approach straightforward and the costs low, while also maintaining a

sufficient performance.

Although more runs were recorded, only the runs processing real material were used for the experimental results.

For the runs where no material was processed, the vibration signals as well as some machine internal data, such as

torque and DC link power, contain much less information, resulting in different data patterns. Thus, the learned

models were not applicable on these runs.

6. Conclusion

Sudden machine tool failures can lead to downtimes of entire factories and thus to enormous costs. Therefore,

the premature detection of machine tool anomalies is an essential task to avoid such downtimes. In this paper,

we present a highly generalizable end-to-end workflow for detecting machine tool anomalies that requires only

basic machine data (e.g., velocity, position, and vibration signals) and a comparably small training data set. Our

approach processes the data in an automated workflow consisting of two main steps: phase detection and anomaly

detection. First, the raw machine data is clustered into production and tool change phases and similar phases

are matched using hierarchical clustering. Second, supervised classification models are applied to detect present

degradations in the phases. By applying a resampling strategy, our approach requires only small training data

sets, which is a crucial requirement for a successful application in the industrial context. We evaluate our workflow

using a real-world data set and apply seven machine learning models to identify anomalies. The results show that

the phase detection is very accurate. In addition, resampling the vibration signal improves the performance of all

machine learning methods, whereby random forest achieves the most robust high values for the evaluation metrics,

while a single decision tree even surpasses random forest for a high rotational speed.
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As future work, the simulation of further anomalies in different states of degradation are planned to assess the

performance and sensitivity of the proposed automated workflow in other scenarios. Furthermore, the transfer of

the approach to other domains is also considered. In addition, we plan to integrate time series predictions from our

earlier work [36] to predict the characteristics of the next production iterations and provide this information to the

machine learning methods in order to not only detect the anomalies, but also to predict them at an even earlier

stage.
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